AD-A212 272

TNt

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THIESIS

Case Study on Rapld Software Prototyplng
and Automated Software Generation:
An Inertial Navigation System
by
Herbert Ginterberg

June 1989

Thesis Advisor: Lugi

Approved for public release; distribution Is unlimited.

JELECTE
SEP 121989

E

89 9 12 914

\

"DTIC

D

UNCLASSIFIED

SECURITY CLASS ZiCa™ D% 77 "= 3 TAGE
REPORT DOCUMENTATION PAGE
1a REFORT SECURITY CLASS.F.CATION b RESTRICTIVE MARKINGS
UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTR:BUTION/AVAILABCLH’Y OF REPORT
2b OECLASSIFICATION - DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited
&* PERFORNING ORGAN.ZATION REFORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
€ NAME OF PERFORMING ORGANIZATION 6o OFF:CE SYMBOL 7a NAME OF MONITORING ORGANIZATION
| Sclence Foundation
Naval Postgraduate School 52 (1] Nationa .
9 [2] Office of Naval Research [3] NPS Research Council
6c ADDRESS (City, State, and ZIP Coae) 7b. ADDRESS (City, State, and ZIP Code)
(1] Washington, D.C. 20550
Monterey, CA 93943 [2] 80O Quincy Street, Arlington, VA 22217-5009
[3] Monterey, CA 93943
8a NAME OF FURDING SFONSOR.NG §o OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) ' -
8¢ ADORESS (City, State, and 2P Coae) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
11 TiTLE (IncJude Security Class:fication)

Case Study on Rapid Software Prototyping and Automated Software Generation: An Inertial Navigation System

12 PERSTHAL A.THORS! Gunterberg, Herbert

13a TYPE OF REPORT "3p TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |35 PAGE COUNT
Masters Thesis 3 Sl ™ 1989 June
16 SUPPLENENTAZY NOTATQ

The views expressed in this thesis are those of the author and do not reflect the
official policy or position ot the Department of Defense or the U.S. Government.

i COSaT COLES Y8 SUBJECT TERMS (Continue on reverse 1f necessary and 1dentify by block number)

FELD CROuUP SUB-ZEOLY

= (Rapid Prototyping, Specification Language, Graphic Editor, Translator, Execution
Support System, Real-Time Programming, Parallell Execution, Ada)

19 ABSTRALT iContinue on reverse if necessary and idertify by biock number)

.

The discipline of software engineering is on the move from an art”to an engineering science based on mathematical
rules. Along this way methods of rapid prototyping and tools for automatic program generation are being developed to
aid the process of software development. This thesis takes a real life example of an Inertial Navigation System and
develops it according to the automation principles for computer aided software development. The techniques of rapid
software prototyping are also applied to the same problem. The software prototype of the Inertial Navigation System can
turther be run through The Computer Aided Prototyping System (CAPS) to mechanically generate Ada software. All
implementation work is done in Ada as required by DoD for all embedded weapon systems. The two approaches will
be integrated for analysis.

&
!
»
20 OSTRBUTION AVAILABILITY OF ABSTRALT 21 ABSTRACT SECURITY CLASSIFICATION UNCL—ASS""ED
O unciassieepagrinnmen [sarts 45 aet OJ omic usens
23 NAMSE Of RESFODNSBLL iDL AL . 22b TELEPHONE (Include Ares Code) | <2c OFFICE SYMBOL
Luqi (408)646-2735 52LQ
DD FORM 1473, r4t00" 83 APF ed *'0n may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASS'F'ED Oftice 1986—608.24,

All other editio=; ~~ ~b-ggte

Approved for public release; distribution is unlimited

Case Study on Rapld Software Prototyping
and Automated Software Generation:
An Inertlal Navigation System

by

Herbert Ginterberg
Lieutenant Commander, Federal German Navy
Submitted in partial fulifiliment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1989
Author: M/‘A J lv/)
Herbey Guferberg
/ '
Approved by: N

/Tuqi, 'Q\esis Advisor

///" M :‘/\,
/) . -
//u'(éfé(/> L\/._ A j}_'/._/‘MJ

Valdis Berzins, Secord Reader

Rt)

Robert B. McGhee, Chairman, Department of Computer Science

~ Ma I\

Kneale T Marshall ormatjon and Policy Sciences

ABSTRACT

The discipline of software engineering is on the move from an "art” to an
engineering science based on mathematical rules. Along this way methods of rapid
prototyping and tools for automatic program generation are being developed to aid the
process of software development. This thesis takes a real life example of an Inertial
Navigation System and develops it according to the automation principles ¢~r camputer
aided software development. The techniques of rapid software prototyping are also
applied to the same probiem. The software prototype of the [nertial Navigation System
can further be run through The Computer Aided Prototyping System (CAPS) to
mechanically generate Ada software. All implementation work is done in Ada as required
by DcD for all embedded weapon systems. The two approaches will be integrated for

analysis.

sston For
| Accesston For |
NTIS GRAXI
DTIC TA3

Unannounced 9

Justifieation

By)
I;g&y{bution{‘_ﬂr

Availability Codmes
T avatl and/er
Dist Special

A-)

38

TABLE OF CONTENTS

I INTRODUCTION . . e e e e e e e e e e 1
A. THE SOFTWARE CRISIS i 1

B. RAPID PROTOTYPINGo e e e 2

C. FORMAL SOFTWARE ENGINEERINGc..... 3

Il. THE PROTOTYPE APPROACH it 5
A. ABOUT CAPS . .\t o it e e 5

B. THE INS PROTOTYPE DEVELOPMENT INPSDL 8

Il. THE FORMAL SOFTWARE ENGINEERING APPROACH 16
A, PREFACE 16
B. THE INITIAL PROBLEM STATEMENT 18

C. REQUIREMENTS ANALYSIS 16

1. The System’'s EnvironmentModel 16

2. Goals and Functions of the System 17

3. Constraints e 17

4. Refined Goals 18

D. FUNCTIONAL SPECIFICATION 20

E. ARCHITECTURAL DESIGN i 29
IV. IMPLEMENTATION e 30
A. PREFACE e 30
B. COMPILER e s 30

1. INTEGRADA . . . 30

2. VERDIX . . 31

C. CONCURRENCY AND EXTENSIBILITY 31

D. TIMING CONSTRAINTS e 34
E. PACKAGING e e e 35
1. Generic package DATA_STORAGE 35

2. Package TERMINAL i 36

3. Generic package FLOATING_POINT_UTILITIES 36

4. Package NAVUTIL e e e 37

F. USER MANUAL e e e e i 38
1.8tart Up . . e 38

2. Run Time Options o i 39

V. CONCLUSIONS . .. e e 41
A. THE ADA LANGUAGE e e 41
1. Object Oriented Programming (QOP) 41

2. Strong TYPING o e 41

3. Information Hiding 42

4. CONCUITENCY ot e e e e e 42

5. Portability 42

6. Hard Real Time Systems 44

7. Final Comment 44

B. SPECIFICATION AND PROTOTYPING 44
C. THE COMBINATION OF PSDL AND SPEC 46

APPENDIX A. INS SPECIFICATION IN PROTOTYPE DESCRIPTION LANGUAGE

(PSDL) . . . 47
APPENDIX B. ADA SOURCE CODE LISTING 58
LISTOF REFERENCES 81
INITIAL DISTRIBUTION LIST 83

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Figure 5:

LIST OF FIGURES

Software Development Process 3
Screendump from Graphic Editor - Operator INS 7
Decomposition of Operator INS 10
internal Representation of Operator DISPLAY_HANDLER 12
External Systems and Interfaces 21

vi

THESIS DISCLAIMER
* Ada is a registered trademark of the United States Government Ada Joint Program
Office.
* INTEGRADA is a trademark of AETECH, Inc.
* Meridian AdaVantage is a trademark of Meridian Software Systems, Inc.
* Sun Workstation is a registered trademark of Sun Microsystems Inc.
The source code developed in this thesis is in not meant for operational use, but
for an academic purpose, therefore anybody who is going to use the code or part of it
shall be advised to check the correctness for the particular application. The author does

not accept any responsibility beyond the academic environment.

vii

ACKNOWLEDGEMENT

... to my wife Gudrun and my sons Andreas and
Daniel for reminding me sometimes, that there is a

world besides computers.

viii

I. INTRODUCTION

A. THE SOFTWARE CRISIS

What is the software crisis? To explain this a look at the development of computers
will be helpful. The early machines had very little memory capacity, therefore the
programs which could run on these machines had to be restricted in their need for
memory as well (the technique of overlays had not evolved then). Since programs were
small it was very easy for a single person to comprehend a program in its entirety. In
those days programming was more of an art than a science. The major portion of the
cost of a computer system was associated with hardware. Computers have come a
long way since then. Memory capacity has increased to a level that was considered
impossible only a few years ago. Presently hardware technology advances at a speed
of improving the memory capacity and speed by a factor of two about every two years.

Unfortunately the software side of computer systems has not been able to keep up
with hardware development. More and more problems are considered to be suitable
for automation and computer application. the problem domain expanded. Soon no one
person was able to comprehend a software system as a single person. but the
techniques used were the same as in the beginning. This led to the software crisis,
the symptoms are described by Booch [Ref. 1:p. 8] as:

* Responsiveness. Computer-based systems often do not meet user needs.

Reliability. Software often fails.
+ Cost. Software costs are seldom predictable and are often perceived as excessive.
+ Modifiability. Software maintenance is complex, costly, and error prone.

+ Timeliness. Software is often late and frequently delivered with less-than-promised
capability.

» Transporniaoility. Software from one system is seldom used in an other, even when
simi'ar .unctions are required.

+ Efficiency. Software development efforts do not make optimal use of the resources
involved (processing time and memory space).

Having stated the symptoms of the crisis, the next question must be about the
causes. which are summarized by Devlin [Ref. 2:p. 2] as:

- Failure of organizations to understand the life-cycle implications of software
development.

+ A shortage of personnel trained in software engineering.

+ The von Neumann architectures of most ot our machines discourage the use of
modern programming practices. :

* The tendency of organizations to become entrenched in the use of archaic
programming languages and practices.

This research explores two efforts which have been undertaken over the last years
to solve the above stated problems. The following two sections will give a brief

overview.

B. RAPID PROTOTYPING

One effort to increase software development productivity is rapid software
prototyping. It is especially worthwhile in the development of hard rea! time systems.
In traditional Software production. a system has to be fully implemented to confirm that
the final product meets the requirements. The idea behind rapid prototyping is to create
a prototype of the proposed system to verify that the real time behavior demanded by
the customer is teasible under the imposed constraints. This can save tremendous
amounts of resources in terms of money and work, because the feasibility of the
system is verified before the actual design and implementation of the system is
undertaken. Design errors are magnitudes cheaper to correct at this level compared to
redesigning and recoding of a finished product which doesn't meet the customer

requirements.

One such system for rapid prototyping. called CAPS (Computer Aided Prototyping
System) which is based on PSDL (Prototype System Description Language) is presently
under development in a research project at NPS. Background information on the CAPS
and a more in depth reference to PSDL can be found in [Ref. 3, 4, 5, 6, 7, 8]. In this
thesis features of PSDL and CAPS concepts will be explained only the extend that is

necessary for understanding and these explanations will be given as the need arises.

C. FORMAL SOFTWARE ENGINEERING
Another approach, which consideres the complete software litecycle anmd not just
the prototyping aspect of software development was developed by Berzins and is
described in [Ref. 9]. The following is a short extract to summarize the key concepts
ot his approach.
DEFINITION:
Software Engineering is the application of science and mathematics to the problem
of making computers useful to people by means of software.{Ref. 9:p. 1-1]
Schware development can be viewed as a five stage process. The concept and

the relations between the different stages can be seen in [Figure 1:p. 3]

Requirements Analysis é____

N\
N/
Functional Specification
N\
Evolntion
A\ N
Architectural Design
N\
NE

lmplementation

Figure 1: Software Development Process

The downarrows show the normal flow of execution, the uparrows represent details
gained at a later stage, which require the repetition of an earlier step. The long arrow
labeled " Evolution" demonstrates that every software product is subject to change due
to altered operating conditions or user needs.

Each of these five steps is associated with certain goals, which are described in
[Ref 9:p. 12] as:

« REQUIREMENTS ANALYSIS: Is the process of determining and documenting
the user needs and constraints.

FUNCTIONAL SPECIFICATION: s the process of proposing and formalizing a
proposed system interface for meseting the
customer needs.

« ARCHITECTURAL DESIGN: Is the process of decomposing the system into
modules and defining internal interfaces.

* IMPLEMENTATION: Is the process of producing a program for each
module.

» EVOLUTION. I= the process of adapting the system to the

changing needs of the customer.

. THE PROTOTYPE APPROACH

A. ABOUT CAPS
CAPS can be characterized as a composition of separate tools which provide the

means to create a prototype of a software system in a fraction of the time the actual
development would take. It is not meant to replace a good software development
environment, but to aid it and make it even better. The prototyping system as mentioned
in Chapter |, has not yet been compietely implemented; therefare a summary of the
capabilities of the completed system will be given. A description of the currently
cperational parts that were used for this thesis as well as the development state of the
other parts will follow. The system incorporates these tools:

« User Interface

» Graphic Editor

+ Syntax Directed Editor

* Language Translator

+ Debugger

« Static Scheduler

* Dynamic Scheduler

+ Software Base Management System

+ Design Database

The user interface ties all the tools together. It takes care of the proper filename
conventions and file formats to be passed between the tools. For the development of

a new prototype, the designer would start with the graphic editor tool.

The graphic editor supports a graphical representation of the datafiow model
underlying the PSDL language. Building blocks of the graphic language are nodes and
arcs. Nodes represent functions or state machines, collectively called operators. Arcs
represent dataflows among others, external inputs or outputs.

Once in the graphic editor, the mouse becomes the primary input device for control
over the editor, whereas text input is entered via the keyboard into designated windows.
The following operations are available to the user:

» for file management:

+ LOAD EXISTING - to retrieve a previously created file for modification.
+ STORE - to store the current graphical representation of a prototype.
* QUIT - to return to the user interface.

« for editing:

+ DRAW OPERATOR - to draw an operator. Each operator must have a unique
identifier and a time constraint which is the maximum
execution time associated with the operator.

- DRAW DATA FLOW- to draw a data flow between two operators, it also must
have a unique identifier and, since the direction of a data
flow is important, it must be taken care of during the
drawing process. The data flow has to start at its originating
operator and end at its destination operator.

+ DRAW SELF LOOP - to draw a self loop, which is the graphic representation of
a state variable, a PSDL construct necessary to describe
a state machine.

DRAW INPUT - to draw an external input into the system. This is also a
data flow with the difference that it doesn't flow from one
operator to another, but from an external source e.g. user,
other software or hardware system.

DRAW OUTPUT - to draw an external output, similar to drawing an input.
except for the direction.

A system screen dump taken during the creation of operator INS is shown in
[Figure 2:p. 7). After leaving the graphic editor certain files are created, whose contents

will be described during the actual development process later on.

tetting mese IIEEVTNEERNEER Srav Sats Fliw v S0l Lowp brew leper o Swipet

————

1geatifier MRS -

Tios Iowst-eint:

Prosent Positdiy

- rwot_ P41 tom
P e

Figure 2. Screendump from Graphic Editor - Operator INS

Output from the graphic editor in textual form is feed into the syntax directed editor,
whose main purpose is to guarantee the completion of a syntactically correct PSDL
program. It assists the user in adding information into the prototype which is not easily
representable in graphic form e.g. periodical behavior of an operator, type
declarations for data flows of all three kinds and triggering conditions. The importance
of syntactically correct PSDL programs becomes obvious in the employmant of the next
tool, the language translator, which relies on this property to translate a PSDL program
into executable Ada code.

The static scheduler takes the output from the language translator and creates a
time schedule for the execution of all time-critical operators and organizes it so that all

timing constraints will be met during execution if possible. All non time-critical operators

are handled by the dynamic scheduler. It checks the static schedule for any unused
time slots and schedules non time-critical operators for execution during

those times. The execution of non time-critical operators may be suspended before
completion, when the static scheduler needs the resources for a time-critical operator.

Whenever there is a conflict during the creation of the schedules or the execution
of the prototype, the debugger is invoked, to give the user a chance to solve the contlict
dynamically on line, instead of breaking off execution and thereby forcing the repstition
of the whole scheduling process from the beginning.

Two databases complete the system. The software base contains reusable Ada
components, which are searched for using the PSDL specification of an operator, the
design data base keeps track of the prototype currently under construction, it maintains
this information by storing PSDL specifications.

The user interface and graphic editor are completely implemented and were used
for this thesis. The language translator is implemented as well, but does not yet include
all the constructs used in this project such as composite data types, therefore it was not
used. For all the other components designs exist, some are partially implemented. but

not operational.

B. THE INS PROTOTYPE DEVELOPMENT IN PSDL

The first tool to be used in the prototype development is the graphic editor. It is
implemented on a SUN workstation and makes extensive use of its windowing and
graphics capabilities. The editor is invoked from the main menu of the user interface
with option "construct” [Ref. 3]. This in turn invokes the 'GE' script. At the top level
design of INS only one operator exists with all inputs and outputs intended for the
complete system. No timing constraints were placed on operator INS. The inputs and

outputs are data streams of type data flow. Streams behave like FIFO queues (first-in-

first-out) with a fixed length of one element. thereby implying, that a new value can only
be added to the queue, after the old value has heen read. For further explanations see
[Ref. 6:p. 9]. After all the entities have been entered into the graphic editor, the picture
is saved in the file SYS.G. The GE script partially produces the syntactically correct
PSDL specification for operator INS, where only the data types for the input and output
data have to be specified, which would normally be done in the syntax directed editor.
Since it is not operational at this time, the editing has to be done manually in a
standard word processor.

The following represents the specification, which is partially created by GE and

completed manually by adding the datatypes:

OPERATOR INS

SPECIFICATION

INPUT Present_Position : POSITION;
Course : FLOAT;
Speed : INTEGER,;
WP_1 : POSITION;
WP_2 : POSITION;
WP_3 : POSITION;
WP_number : INTEGER;
New_time : TIME;
New_choice . INTEGER,;

OUTPUT Present_Position : POSITION;
Course . FLOAT;
Speed . INTEGER,;
WP_1 : POSITION;
WP_2 : POSITION;
WP_3 : POSITION;
WP_number : INTEGER,;
Bearing : FLOAT,
Distance : FLOAT;

END

Since the design database does not contain an implementation for operator INS, it
needs to be decomposed. The graphic representation is provided in [Figure 3:p. 10].

New constructs used in the decomposition are state variables, which are represented

0id Chotee

New_Cho'ce

Creck_Keyboard

°
revent_Posttton ost_Retent_Position

Course J
Course
Speod L » Speed
w wp_1
P
w_ Diaplay_MandVer -:
w_ _umber
LI ber ering
Distence
Course Speeddy pogiqion Digtance

p "I \BRary
st _Recant Position ._-‘ = R
="Wost_recent _Position

Yoa_Time

Compute Potition

Cﬁ:u_bnr!ng_ouur\u

Figure 3: Decomposition of Operator INS

as self loops and data streams between operators, but unlike the data streams inte and
out of operator INS these are sampled data streams, which means that the data are
buffered. A new value can be written to the buffer regardless of whether the old value
has been read or not. The buffer can be read as often as needed, always providing the
most recent data value.

As soon as a value has been placed into it for the first ime, a read operation does
not destroy the old data value, whereas a write operation will replace the old value with
the most recent one. For further explanations see [Ref.6:p. 9]. In this example operators
CHECK_KEYBOARD, COMPUTE_POSITION AND COMPUTE_BEARING_DISTANCE
are atomic and need no further decomposition. Atomic operators are those which are
already in the design database or can be easily implemented in Ada.

CHECK_KEYBOARD as its name suggests checks the keyboard for an interrupt,

which in turn directs the flow of control for the lower levels of the system depending on

10

user input. If no new interrupt is sensed, the control is directed according to the last
interrupt. This scheme turns the system in its entirety into a state machine. Control of
the lower levels is executed via the data streams OLD_CHOICE or NEW_CHOICE.

COMPUTE_POSITION is an independent process which updates the present position
of the aircraft using the velocity values received by the system, the last valid present
position, called OLD_POSITION, or a new position entered by the user. It produces a
new present position, called MOST_RECENT_POSITION. The reason for using three
different names for the same entity, a present position, lies in the naming conventions
used in the graphic editor and PSDL itself. If the same name is used for several data
streams (overloading) the system treats all those streams as being the same which is
not really the case.

COMPUTE_BEARING_DISTANCE is another independent process working on the
MOST_RECENT_POSITION, a WP_NUMBER which represents a user choice and the
respective waypoint data contained in WP_1, WP_2 or WP_3 respectively. The outputs
BEARING and DISTANCE are stored in their appropriate buffers.

Operator DISPLAY_HANDLER is composite. [Figure 3:p 11] gives the graphic
representation. All operators at this level are atomic; they comprise input and output for
the system. The left column contains the operators responsible for input. In the middle
column the data buffers are grouped together. Inputs to these buffers are all of type
sampled data stream. Operators for system output are in the right column.

A word of explanation about the data bufters used is in order here. The fact that
the above mentioned data streams are considered to be sampled data stream implies
that they are inherently buffered, therefore no buffers as depicted in [Figure 3:p. 10]
need to be explicity mentioned, however they are included here for a better

understanding of the system layout. In the strict sense of PSDL the middle row in the

11

figure could be eliminated without changing the meaning or behavior of the overall

system.

.
Prasent Positien] Provnt Praciion " | t_Recent_Position
T 1 ferent Position

? wttgr B 1epley_present position
4 for't'en
et bt Nt Selont_fixemt Pesttlon

e
)) w i
[
we_7 - »
Emee_vapoinm - "

b
L]
nring puffer
Dlutaner = Bfarante

Nmuu bu’ter

= ‘/__ﬂ/
Spesd /
£risr_sosed '{ﬂ
tewrse_bufler iiadd

uolly coures and_speed

Enter_p-asent_pori: w-

Enter_course

¥ rwamber

N'd
e
et B

P naber_buffer

Figure 4: Internal Representation of Operator DISPLAY_HANDLER

In addition to creating the PSDL specification the file PSDL.LINKS is created,
which contains the textual representation of the operators in the form of link statements
connecting the different operators. At the end is a list of all internal data streams. its

contents for the decomposition of OPERATOR INS is shown below and on the next

page.

12

OPERATOPR INS:

Old_choice.Check_keyboard --> Check_keyboard
Old_choice.Check_keyboard --> Display _handier
New_choice.Check_keyboard --> Display_handler
Bearing.Compute_bearing_distance --> Display_handler
Distance.Compute_bearing_distance --> Display_handier
Speed.Display_handler --> EXTERNAL
Speed.Display_handiler --> Compute_position
Course.Display_handler --> EXTERNAL
Course.Display_handier --> Compute_position
Old_Position.Display_handler --> Compute_position
Bearing.Display_handier --> EXTERNAL
Distance.Display_handler --> EXTERNAL
WP_1.Display_handler --> EXTERNAL
WP_2.Display_handier --> EXTERNAL
WP_3.Display_handier --> EXTERNAL A
WP_number.Display_handler --> Compute_bearing_distance
WP_3.Display_handler --> Compute_bearing_distance
WP_2.Display handier --> Compute_bearing_distance
WP_1.Display_handler --> Compute_bearing_distance
WP_number.Display_handler --> EXTERNAL
Most_recent_position.Display_handler --> EXTERNAL
New_choice.EXTERNAL --> Check_keyboard
Oid_time.Compute_position --> Compute_position
Most_recent_position.Compute_position --> Display_handier
Most_recent_position.Compute_position --> Compute_bearing_distance
WP_number.EXTERNAL --> Display_handler
New_time.EXTERNAL --> Compute_position
WP_1.EXTERNAL --> Display_handler

WP_2 EXTERNAL --> Display_handler

WP_3.EXTERNAL --> Display_handler

Present_Position. EXTERNAL --> Display_handler

Course. EXTERNAL --> Display_handler

Speed.EXTERNAL --> Display_handler

DATA STREAM

Bearing . FLOAT;

Distance : FLOAT;

Speed : INTEGER,;
Course : FLOAT;

WP_number : INTEGER;
WP_3 : POSITION,;
WpP_2 : POSITION;
WP_1 : POSITION;
Old_Position . POSITION;
Old_choice : INTEGER,;
New_choice : INTEGER,;

Most_recent_position: POSITION;

13

The three lines
[1] Oid_choice.Check_keyboard --> Check_keyboard
[2] Course.Display_handler --> Compute_position
[3] Present_Position.EXTERNAL --> Display_handler
are typical for the possible data streams. [1] represents a state variable and can be
read as: there is a data stream called Old_choice originating at operator
Check_keyboard and also ending at that operator. [2] is a standard data stream
between two operators. [3] shows an external input to the system, a similar format is
used for outputs.
The last items needed to completely specify operator INS are potential control
constraints for its subcomponents, which have been defined as:
CONTROL CONSTRAINTS
OPERATOR DISPLAY_HANDLER
PERIOD 1s
OPERATOR COMPUTE_BEARING_DISTANCE
PERIOD 1s
OPERATOR COMPUTE_POSITION
PERIOD 1s
These constraints do not appear in graphic representation, since it only shows
maximum execution times. For clarification of an operator the design language includes
a description construct.
DESCRIPTION
{This is the root operator. It is composite and consists of the composite operator
DISPLAY_HANDLER and the atomic operators CHECK_KEYBOARD.
COMPUTE_BEARING_DISTANCE and COMPUTE_POSITION}
END
Since the rest of the development is a repetition of the steps described so far, that
work is not presented here. A complete PSDL specification for the system can be found

in Appendix E. Operator COMPUTE_POSITION is used on the next page to clarify a

certain aspect which might confuse the reader.

14

OPERATOR COMPUTE_POSITION
SPECIFICATION

INPUT Speed : INTEGER,;
Course : FLOAT,
Old_Position : POSITION;
New_time : TIME;

QUTPUT Most_recent_position: POSITION;
STATE Old time : TIME;
END

Part of a complete PSDL implementation of an operator is the TRIGGER
CONDITION, which can take on the values BY ALL or BY SOME [Ref. 6:p. 26]. The
fact that no TRIGGER CONDITION is used indicates that the default value TRIGGERED
BY ALL is used. In the case of operator COMPUTE_POSITION all four inputs SPEED,
COURSE. OLD_POSITION and NEW_TIME have to be present to fire the operator.

iil. THE FORMAL SOFTWARE ENGINEERING APPROACH

A. PREFACE

The system development will follow the steps as outlined in [Ref. 9] which was
summarized in the introduction [see p. 4]. It is assumed, that the reader has familiarized
himself with the sequence and purpose of each step. This is a case study aimed at
exploring methods for software development and not at creating a system of production
quality for operational use, therefore certain aspects of the system such as the concept

of ‘'wind’ will be left out of consideration.

B. THE INITIAL PROBLEM STATEMENT
The proposed software system Is an Inertlal Navigation System (INS) to be
used In alrcraft. It Interacts with the flight directory system. The system must
be capable of derlving the present position of the aircraft and provide
Information about the flight parameters as weil as destination data for selected
destinations. Additional data needed for alrcraft steering must be avallable.
C. REQUIREMENTS ANALYSIS
1. The System's Environment Model
To create a vocabulary to which all persons involved in the development process
can reter and agree a mode! of the system’s environment is built. For this example it
is the following:

* The INS will be a software system.

» it will interact with the flight directory system (FDS), the user and the velocity unit
(VU).

*» The FDS is a device used to steer the aircraft in an automatic mode.

« The VU is the part of the overall system where the aircraft acceleration in all three
dimensions is measured and converted into velocities.

+ Automatic mode describes the fact that the aircraft is steered by the computer and
not by the pilot.

16

* The present position is the aircraft's position relative to the earth’'s surface, it is
e.pressed in terms of latitude and longitude.

Flight parameters are measures of the aircraft's behavior with respect to movement
in space consisting of the components course, speed and altitude.

A destination is a point in space expressed in the same terms as present position.

Destination data are measures of the relative position of the aircraft to the
destination.

+ Data for steering the aircraft are those that are needed by the flight directory system
to steer the aircraft to the selected destination.
2. Goals and Functions of the System
To derive the high level goals the initial problem statement is used. For the
proposed system they are:
G1. The purpose of the INS is to help the aircrew to navigate their aircraft.
G1.1: The system must provide information about the state of the aircratft.
G1.2: The system must calculate destination data for destination positions.
G1.3: The system must provide data necessary to steer the aircraft.

G1.4. The system is supposed to be highly concurrent and prepared for future
extensions.

3. Constraints
With the development of every system certain constraints like a fixed budget or
delivery dates are associated; which are usually implied by the customer. For our
example they are aimed at making this project feasible and suitable for the academic

environment.

Implementation Constraints
C1: The system has to be implemented in Ada
C2: The implementation should aim at a high level of concurrency.
C3: The compilers available are
« VERDIX on a SUN workstation
- Meridian AdaVantage on a IBM XT compatible PC
« INTEGRADA on a IBM XT compatible PC
Performance Constraints
C4.The positional data and destination data have to be updated. every second.
C5:The system must allow for future extensions.
Resource Constraints

C6:The system must be developed within three month by one person.

4. Refined Goals
Continuing in the development process, the high level goals derived earlier,
have to be refined. This is done by identifying the concepts in the high level goais

which need to be explained further. The goals are repeated here for easier reference.

G1.1: The system must provide information about the state of the alrcraft.

The concept of 'state of the aircraft’ needs to be refined; it consists of information
about the aircraft's position and its flight parameters. These concepts have been
explained in the environment model; therefore the refined goals for Gi.1 are:

G1.1.1: The system must provide the aircraft present position.
G1.1.2: The system must provide the aircraft course.
G1.1.3: The system must provide the aircraft speed.

G1.1.4: The system must provide the aircraft altitude.

18

Another level of refinement is needed to define the units of the above introduced
entities and their meanings.

G1.1.1.1: The position consists of latitude and longitude, both measured in degrees(’),
Minutes(') and Seconds("). Latitude can take on values from 90° south to 90°
north. The range for longitude extends from 180° west to 180° east.

G1.1 2.1: Course is measured in degrees(’), oriented to true north which equals a
course of 0°.

G1.1.3.1: Speed is measured in knots(KTS) and can range from O to 499KTS.

G1.1.4.1: Altitude is measured in feet(ft) and ranges from O to 50000ft.

G1.2: The system must calculate destination data for destination positions
'‘Destination data’ as mentioned in the environment model determine the relative
position of the aircraft to a destination position. This relation is expressed in terms of
true bearing and distance.
G1.2.1: The system must calculate the true bearing from the aircraft to a destination
position.
G1.2.2: The system must calculate the distance from the aircraft to a destination

position.

G1.3: The system must provide data necessary to steer the alrcraft.

In G1.3 the concept of 'data necessary to steer the aircraft’ needs refinement.
The environment model mentions that the aircraft can be flown in automatic mode.
Consequently the steering data must be those needed to employ that automatic mode.
In order for the aircraft to fly to a destination position it needs a direction to fly in, which

e.g. can be provided as a bearing relative to the present course. This relative bearing

19

is the difference between the present aircraft course and the true bearing of the aircraft
to the destination position. Refinement of G1.3 results in:

G1.3.1: The system must provide true bearing to a destination position.

G1.3.2: The system must provide relative bearing to a destination position.

After defining all these goals the question arises how they can be met; where
does all the information to satisfy the goals come from? In this case all the necessary
data will be computed inside the INS and the data these computations will be based
on will enter the system via its interfaces to the user and the velocity unit, which will

be defined in the functional specification.

G1.4: The system Is supposed to be highly concurrent and prepared for future
extenslons.
The goals in G1.4 cannot be refined here, they will be considered in the

architectural design stage and in the implementation.

D. FUNCTIONAL SPECIFICATION

Berzins provides procedures and guidelines for the conduct of a functional
specification in [Ref.9:p. 3-16]. Each step is quoted here to enable the reader to follow
the development process more easily.
STEP 1

"Identity the major subsystems of the proposed software and the user classes and
external systems with which the proposed software system will interact.”

Using the environment mode! created earlier, the following entities are identified:
* There will be one INERTIAL_NAVIGATION_SYSTEM software system.
+ The system will interact with three external systems, USER,
FLIGHT_DIRECTORY_SYSTEM and VELOCITY_UNIT, the latter two being hardware

devices.

No subsystems are identified at this time.

20

STEP 2

"Identify all external interfaces of the proposed subsystems, and make a list of the
messages in each interface. Make sure the identified messages correspond to the
goal hierarchy, and go over the lists with the customer. Create a SPEC moduie for
each external system, subsystem and interface. Set up the inheritance links between
the interfaces and the proposed subsystems.”
There are three external systems, one interface for each one is needed. They
are named as: user_interface, flight_directory_system_interface and
velocity_unit_interface. The definitions given so far are summarized in [Figure 5:p. 21]

to insure the proper understanding of the general layout of the proposed system before

continuation.
s A
USER FDS
INS
USER INTERFACE INTERFACE FDS
VU INTERFACE

\ —

VU

Figure 5: External Systems and interfaces

To avoid repetition of writing and reading, the lists of messages pertaining to
each intertace are incorporated into the corresponding SPEC constructs right away. A
'?" in a specification marks an entity that is non trivial and needs further refinement in
a later stage of the specification process. The resulting specification are shown on the
next page:

21

MACHINE inertial_navigation_system
INHERIT user_interface
INHERIT flight_directory_system_interface
INHERIT velocity_unit_interface

STATE

INVARIANT true

INITIALLY true
END

MACHINE flight_directory_system
STATE ?
INVARIANT true
INiTALLY true

-- The flight_directory_system is a hardware system, therefore it will not be considered
-- any further in the development process.
END

MACHINE velocity_unit
STATE ?
INVARIANT true
INITIALLY true

-- The velocity _unit is a hardware system, therefore it will not be considered any
-- further in the development process.
END

MACHINE user
STATE ?
INVARIANT true
INITIALLY true

END

MACHINE user_interface
STATE ?
INVARIANT true
INITIALLY true

MESSAGE new_position
-- Enables the user to enter the coordinates for a new present position into the
-- system.

MESSAGE define_waypoint

-- Enables the user to enter the coordinates for a destination waypoint into the
-- system.

22

MESSAGE select_waypoint
-- Enables the user to select one of the waypoints as a destination for computing
-- destination data from there on.

MESSAGE display_select
-- Enables the user to select a data item for display on the screen.
END

MACHINE flight_directory_system_interface
STATE ?
INVARIANT true
INITIALLY true

MESSAGE relative_bearing_to_a_WP
-- Requests a relative bearing inertial_navigation_system to a selected waypoint for

-- steering the aircraft.
END

MACHINE velocity_unit_interface

STATE ?

INVARIANT true

INITIALLY true

MESSAGE new_velocities

-- Provides new velocity data to MACHINE ins.
END
Since this is an example aiming at exploring the principles of software

engineering and not actually develop a complete system, the further development and
refinement will not be done for all components but only for those, which give good
examples for what is supposed to be done in each step or are suitable to introduce new
concepts. For step three the MACHINE user_interface has been chosen.
STEP 3

"For each interface, write down a skeleton specification for all of the messages.

Choose names for all messages, exceptions and message components, and identify

the data type of each message component. identify any new abstract data types

needed, and create SPEC modules for them. When all of the components have

been identified, make an initial estimate of how much effort it will take to build the

system.”

Step three yields the following result for MACHINE user_interface, where the

comments relate to the corresponding goal, developed in the requirements analysis:

23

—7

MACHINE user_interface
STATE ?
INVARIANT true
INITIALLY true

MESSAGE new_position (p: position) -G1.1.1
TRANSITION ?

MESSAGE define_waypoint (waypoint: position, wp_number: waypoint_number_range)
- Gi.2
WHEN ?
TRANSITION ?
OTHERWISE REPLY invalid_waypoint_number

MESSAGE select_waypoint (wp_number: integer) --G1.2
TRANSITION ?

MESSAGE display_select (display_selection: display_option) ‘ --G1.1, G1.2
TRANSITION ?

TEMPORAL update_display WHERE PERIOD ?
SEND ?

END

A TEMPORAL clause has been introduced here to represent the time dependant
behavior of the interface. It will be elaborated later on.

No abstract data types are identified at this time, since no other operations than
input and output are performed on either of the data types position, real and integer.
STEP 4

"Invent conceptual models for each machine and type. Develop the invariants and
initial conditions, and define the concepts needed to specify them. Check the
consistency of the interfaces, and make any adjustments needed.”

Before the INVARIANT and INITIALLY conditions can be discussed, it is
necessary to elaborate the STATE of the interface. It is to contain the following entities:

* Present position
« Course

» Speed

* Altitude

24

+ Waypoints 1 to 3 (From here on the system is supposed to be able to
handle up to three waypoints)

« Current_waypoint_number

+ Display_selection

Since the components in the STATE can take on only defined values, e.g.

display_selection can take on only those values enumerated in type display_option, and

there are no unallowed interactions between the components in the state, INVARIANT

is true for all possible STATES.

All components in STATE are initialized before the user takes control over the

program. The refined specification for MACHINE user_interface: .

MACHINE user_interface
STATE (present_position

course
speed
altitude
waypoint_1
waypoint_2
waypoint_3
current_wp_number
display_seiection

INVARIANT true

INITIALLY present_position
course
speed
altitude
waypoint_1
waypoint_2
waypoint_3
current_wp_number
display_selection

W w i n unonn

. position,

: beanng_range,

: speed_range,

: altitude_range,

. position,

. position,

. position,

: waypoint_number_range,
: display_option)

[latitude::0.0,longitude::0.0],
0.0,

oy

0,
[latitude::0.0,longitude::0.0],
[latitude::0.0,longitude::0.0],
[latitude::0.0,longitude::0.0],

1,
present_position_choice

MESSAGE new_position (p: position)
TRANSITION ? -- update coordinates for present_position

MESSAGE define_waypoint (waypoint: position, wp_number: waypoint_number_rangse)
WHEN 7 -- distinguish between waypoints
TRANSITION ? -- update coordinates for a waypoint
OTHERWISE REPLY EXCEPTION invalid_waypoint_number

MESSAGE select_waypoint (wp_number: integer)
TRANSITION 7 -- update the waypoint selection

25

MESSAGE display_select (display_selection: display_option)
TRANSITION ? -- update display choice

TEMPORAL update_display WHERE PERIOD ?
SEND ?

CONCEPT position: type
WHERE ?

CONCEPT bearing_range: type
WHERE ?

CONCEPT speed_range: type
WHERE ?

CONCEPT altitude_range: type
WHERE ?

CONCEPT waypoint_number_range: type
WHERE 7

CONCEPT distance_range: type
WHERE ?

CONCEPT display_option: type
WHERE ?
END

STEP 5

"Develop the WHEN, WHERE and TRANSACTION clauses for each message and
identify the concepts needed to specify them. Refine the invariants as needed.
Determine IMPORT, EXPORT relations for shared concepts and create definition
skeletons for each concept. The definition skeletons should define the types of
inputs and outputs for each concept, and should have an informal description of the
concept.”

STEP 6
"Write formal definitions for concepts, identifying any necessary lower level concepts,
and writing definition skeletons for them. Continue until all concepts have been
defined in terms of built-in or available components. Check the internai consistency
of the entire specification, and resolve any conflicts.”
Steps five and six are combined. All the WHERE and WHEN clauses that were
marked by a '?' in the previous step are elaborated here. The result is shown on the

next page.

26

MESSAGE new_position (p: position)
TRANSITION present_gositicn = p

MESSAGE define_waypoint (waypoint: position, wp_number: waypoint_number_range)
WHEN current_wp_number = 1
TRANSITION waypoint_1 = waypoint
WHEN current_wp_number = 2
TRANSITION waypoint_2 = waypoint
WHEN current_wp_number = 3
TRANSITION waypoint_3 = waypoint
OTHERWISE -- no other choice possible due to type restriction for wp_number

MESSAGE select_waypoint (wp_number: integer)
TRANSITION current_wp_number = wp_number

MESSAGE display_select (display_selection: display_option)
TRANSITION *display_selection = display_selection

TEMPORAL update_display WHERE PERIOD = (1 second)
WHEN display_selection = present_position_choice
SEND display(p: position) TO user
WHERE p = present_position
WHEN display_election = course_choice
SEND display(c:bearing) TO user
WHERE ¢ = course
WHEN display_selection = speed_choice
SEND display(s:integer) TO user
WHERE s = speed
WHEN display_selection = altitude choice
SEND display(a:altitude_range) TO user
WHERE a = altitude
WHEN display_selection = waypoint_choice
SEND (w: position) TO user
WHERE IF current_waypoint_number = 1 THEN w = waypoint_1
ELSE IF current_waypoint_number = 2 THEN w = waypoint_2
ELSE w = waypoint_3
Fi
WHEN display_selection = true_bearing_to_a_wp_choice
SEND (t: bearing_range) TO user
WHERE t = true_bearing(present_position, waypoint:: position)

WHEN display_selection = distance_to_a_wp_choice
SEND (d: distance_range) TO user
WHERE d = distance(present_position, waypoint:: position)
OTHERWISE -- no other choice possible due to type restriction for
-- display_selection

CONCEPT position: type

WHERE position = TUPLE({latitude:: lat_range, longitude:: lon_range}
-- The meaning of type position is explained in G1.1.1.1.

27

CONCEPT bearing_range: type
WHERE subtype(bearing_range, real) & ALL(b: bearing_range:: 0.0<=b<360.0)
.- A compass rose has values from 0.0 to 360.0 degrees

CONCEPT speed_range: type
WHERE subtype(speed_range, integer) & ALL(s:speed_range:: 0<=s<500)
-- Maximum speed allowed is 500 kts

CONCEPT aititude_range: type
WHERE subtype(altitude_range, integer) & ALL(a:altitude_range:: O<=a<=50000)
-- Maximum altitude allowed is 50000 feet

CONCEPT waypoint_number_range: type
WHERE subtype(waypoint_number_range, integer) &
ALL(w:waypoint_number_range:: 1<=w<=3)
-- Only three waypoints are allowed

CONCEPT distance_range: type
WHERE subtype(distance_range, real) & ALL(d:distance_range:: 0.0<=d<=10800.0)
-- 10800 is the maximum number of nautical miles between two points on the
-- earth's surface it is equal to half its circumference.

CONCEPT display_option: type

WHERE display_option = enumeration { present_position_choice,
course_choice,
speed_choice,
altitude_choice,
waypoint_choice,
true_bearing_to_a_wp_choice,
distance_to_a_wp_choice)

-- The display_option is a way for the user to control, which data item is displayed

-- on the screen.

CONCEPT distance(present_position waypoint. position)
VALUE (d: distance_range)
-- uses a formula from spherical geometry to calculate the distance between two
-- points on earth's surface and expresses it in terms of distance_range

CONCEPT bearing(present_position waypoint: position)
VALUE (b: bearing_range)
-- uses a formula from spherical geometry to calculate the bearing between two
-- points on earth's surface and expresses it in terms of bearing_range

CONCEPT lat_range: type
WHERE subtype(lat_range, real) & ALL(l: lat_range:: -90.0<=1<=90.0)

CONCEPT ion_range: type

WHERE subtype(lon_range, real) & ALL(l: lon_range:: -180.0<=I<=180.0)
END

28

The above is the complete abstract functional specification for MACHINE
user_interface and marks the end of the mechanical development, since the remainder
would be a repetition of the used methods of refinement. As a first result of this work
it shall be mentioned here, that this kind of process is not suitable for a manual
approach. It will only be feasible for large software system after automated tools have
been developed. which aid the designer/analyst in the process, e.g. a syntax checker
is already available and was used to verify the syntactical correctness of the
specification; a typechecker and a syntax directed editor are currently under

development.

E. ARCHITECTURAL DESIGN

The architectural design for the INS system does not have to be developed
using the SPEC language. since this step was already accomplished in the PSDL
development, for a review see [Figure 2:p 7], [Figure 3:p 10} and [Figure 4:p. 12]. The

design is ready tc be implemented at this stage.

29

IV. IMPLEMENTATION

A. PREFACE

Up to this point we have explored methods to create software in an automated
fashion. Since not all tools are operational yet, the implementation of the INS system
was done in the traditional ‘'manual’ way. This approach is worthwhile becauss it gives
a good bases for future work. When all the tools become available, a test case will
already be available which can be used to compare automatically and manually
produced software. Even though the implementation was done manually, the author tried
to stay as close to the development work done so far as possible. Parts of the code
for the INS system are shown in this chapter, for the full implementation consult

Appendix B. Actual code is typed in bold face to visually separate it from the text.

B. COMPILER
The implementation was done using two compilers:
1. INTEGRADA

The system runs on an IBM XT personal computer and was used to develop
subcomponents to be integrated into the overall system at a later stage.

INTEGRADA is not only a compiler, but a development environment, providing
an editor which can be used as a normal programmer's editor or as a syntax or
language directed editor. This was considered useful, since the Ada language is very
rich in its available constructs, and the syntax generation capability saved a lot of time
in consulting the Ada language reference manual (ALRM) [Ref. 10] and other literature.

Another feature of INTEGRADA is the pretty printer which allows the user to

format the source code in several ways. The option 'Program Structure’ is very helpful

30

for debugging purposes and the option 'MIL STD 1815 A’ [Ref. 10] was used after all
the source code had reached its final stage to format the documents in a format as
described in the ALRM and that is accepted in the Ada community.
2. VERDIX

The target machine for the final product was a SUN workstation, the compiler
available on this system is the VERIDX Ada compiler Version 5.5 for the SUN 3. In
contrast to INTEGRADA this compiler is a stand alone version, not an environment,
although some tools are provided with the system. To be mentioned are the source
level debugger which was very helpful in the implementation phase and the pretty

printer.

C. CONCURRENCY AND EXTENSIBILITY
During the formal requirements analysis the goal G1.4 was derived (see also p. 17)
G1.4: The system Is supposed to be highly concurrent and prepared for future
extenslons.
This goal was realized in part during the decomposition of the prototype approach
by dividing the system into four separate processes, which can be executed
concurrently (see also Figure 3:p. 10). In the implementation these processes are

implemented as four independent tasks, whose skeletons are shown on the next page.

31

procedure INS is

task CHECK_KEYBOARD is

end CHECK_KEYBOARD;

task COMPUTE_POSITION is
.

end COMPUTE_POSITION;

task COMPUTE_BEARING DISTANCE is

end COMPUTE_BEARING DISTANCE;

task DISPLA._ HANDLER is

end ;xspmy_xmmz.zn;
end ins;

This approach has the inherent problem of data integrity. Some of the tasks operate
on the same data elements and the question is, how to ensure that no two tasks try
to reference and update the same data element at the same time, a problem which is
new in multitasking environments, where a program is no longer a sst of instructions
which are executed in sequence.

A solution was found in an algorithm presented in [Ref. 11]. It uses a task with two
entries, one entry allows data to be written to a buffer, the other one allows reading
from that buffer. Since the two ’accept’ statements are incorporated in a select
statement, only one of them can be executed at a time, thereby ensuring data integrity.
This data buffer was implemented as a generic package containing a task type. Since
the package is generic, it can be instantiated for different data types, the task type
allows the creation of several instances of the same type. The accessibility of the data
also provides for tuture extensions to the system. The actual source code used in the

INS system is shown on the next page.

32

generic
type ITEM TYPE is private;
package DATA_STORAGE is
task type BUFFER is
entry STORE (ITEM : in ITEM TYPE):
entry RECALL (ITEM : out ITEM TYPE);
and BUFFER;
end DATA_ STORAGE;
package body DATA STORAGE is

task body BUFFER is
DATUM : ITEM TYPL;

begin
loop
seleact
accept STORE (ITEM : in ITEM TYPE) do
DATUM := ITEM;
end STORE;

or
accept RECALL (ITEM : out ITEM TYPE) do
ITEM := DATUM;
end RECALL;
end select;
end loop;
end BUFFER;
end DATA_STORAGE;

To accommodate all buffers necessary for the INS system nine tasks which serve
as data buffers were instantiated.

A drawback of the multitasking concept was found during the development of the
input facilities. Due to the underlying operating system (UNIX) it was necessary to
serialize the two tasks CHECK_KEYBOARD and DISPLAY_HANDLER, which doesn't
affect the functionality of the overall system nor its efficiency or speed. However the
implementation is very sytem dependant for this part, which degrades portabibilty. Since
problems of this nature were not the main subject for this research they were not

investigated any further, which might have resulted in other solutions.

33

D. TIMING CONSTRAINTS
During the prototype development, time constraints were placed on some of the
operators. To show the principle of implementing such constraints, task

COMPUTE_BEARING_AND_DISTANCE is discussed.

task body COMPUTl_pIARING_PISTANCI is
L]
L]
begin
L
L]
loop
TASK_START := CLOCK;
-- starts a stopwatch local to this task
*

~- gstatements to execute the necessary computations
.

L
TASK_DONE := CLOCK;
-- stops the stopwatch
delay 1.0 - (TASK _DONE - TASK START);
-- pauses the task
end loop;
end COMPUTE BEARING DISTANCE;

When the task enters the loop, a stopwatch local to this task is started. After all the
computations are executed and just before the end of the loop the stopwatch is
stopped. The task is then delayed for a period of one second minus the time it took to
execute the loop, thereby creating a repetition time or period of one second for the
loop. Should the difference be negative, which indicates that the loop needed more than
one second to executg. the task will not be delayed and the next loop execution will
start right away. According to the Ada standard, this does not necessarily mean the
next loop execution starts exactly one second after the last one, but that the task is put
in a 'ready’ state, waiting for resources. When the necessary resources are available,

the task is put into the 'running’ state and execution starts.

34

E. PACKAGING
The system was divided into a main program and four packages. Two of the four
packages are generic and were instantiated in multiple instances.
» procedure INS
* package NAVUTIL
» generic package FLOATING_POINT_UTILITIES
« package TERMINAL
» generic package DATA_STORAGE
Packages NAVUTIL, FLOATING_POINT_UTILITIES and TERMINAL represent
collections of resources, package DATA_STORAGE implements a buffer data type. In
addition to these user defined packages five additional packages supplied with the
compiler were used:
* package TEXT_IO
* package MATH
» package CURSES
* package IOCTL
* package SYSTEM
1. Generic package DATA_STORAGE
This package was already discussed in Chapter IV.C. Here an example of its use
is given. A navigation system needs the capability to store a geographical position,

consequently a buffer was instantiated for this purpose:

package POSITION_STORAGE is new DATA_STORAGE (POSITION) ;
where POSITION is a user defined record data type. This makes a task type BUFFER
available for data type POSITION. Then a variable of that data type is declared:

Wp_BUFFER : array (0 .. MAX WAYPOINTS) of POSITION_STORAGE.BUTFER;

35

The position is stored in one of the array elements. An example of its usage Is the

task for computing the PRESENT_POSITION shon below.

task body COMPUTE_POSITION is
L)
begin
L)
*
WP_BUFFER (0) . RECALL (PRESENT POSITION) ;
-~ retrieves the old PRESENT_POSITION from its buffer
.
L
-~ statements to do the calculation
L
L
WP_BUFFER (0) . STORE (PRESENT_POSITION) ;
-- Stores the new PRESENT_POSITION into its buffer

end COMPUTE_POSITION;
2. Package TERMINAL
Terminal is the only package that contains hardware dependant code, hence the
specification and the body were located in separate files. If the system is to be ported
to another system, which has different terminal capabilities, the body of package
TERMINAL is the only part that needs to be recoded and recompiled. The current
version contains options to run the system on a SUN workstation or a VT 100 terminal.
3. Generic package FLOATING_POINT_UTILITIES

The FLOATING_POINT_UTILITIES package contains some mathematical
functions not provided in the standard math library. Most of the algorithms were taken

from [Ref. 12]. The functions listed below.

functio~ INTEGER_PART
function REAL_PART
function FLOOR
function CEILING
function IS _POSITIVE
function IS_NEGATIVE
function INT_TO_CHAR
function CHAR TO_INT

36

These functions were primarily used in conjunction with input/output operations,
which are all done in string or character format, to allow more control over the screen

layout. A sample screen is shown in the user manual in Section IV.F of this thesis.

4. Package NAVUTIL

Ali the functions used to perform the necessary computations in the INS system

are located in this package. It also includes the functions for input and output of

navigation specific data.

procedure GET_POSITION
procedure GET_SPEED;
procedure GET_COURSE;
procedure DISPLAY POSITION
procedure BEARING DISTANCE
procedure UPDATE_POSITION

As an example for an input operation procedure GET_COURSE is shown here.

The input is supposed to be in the form DDD.D, where D is a digit from '0" to '9".

procedure GET_COURSE is
®
L]
begin

L]
-

-- read in the string

GET (COURSE_S) ;

-~ check for periecd in the correct place

if COURSE S(4) = '.’ then
SUCC1 := TRUE:

else
SUCC1 := FALSE;

end if;

-- convert string to a variable of type FLOAT
COURSE_F := FLOAT(CHAR_TO_INT (CQURSE _S(1)) *» 100 +
CHAR ' TO _INT (COURSE S(2)) * 10 + CHAR TO_INT (COURSE_S(3))) +
FLOAT(CHAR TO INT(COURSE _S(5))) * 0. 1;
-- check that value is in range
if COURSE_¥ >= 0.0 and COURSE_F < 359.9
then SUCC2 := SUCC1 and TRUE;
else
SUCC2 := FALSEK:;
end if;

end GET_COURSE;

37

The remaining input operations for the system are similar, and differ only in the
input string length and the checks to be passed, before an input is accepted as valid.

These checks are embedded in loops, which can only be exited on a valid input.

F. USER MANUAL
1. Start Up
Only one file named 'INS’ is necessary to run the system, it is invoked without
any parameters. The system interacts with the user only via the keyboard. Although
some error checking is implemented in the system, some errors are unrecoverable at
run time. In such cases program execution has to be aborted by pressing the
'CONTROL' key and the 'C’' key at the same time. After an internal start up sequence

the user is presented with the screen shown below.

INS SIMULATOR

LATITUDE NOGCO0.0 LONGITUDE W00000.0
ENTER . UEDATE DISPLAY
(1] PRESENT POSITION {6] PRESENT POSITION
[2] WAYPOINT {7) WAYPOINT
{3] COURSE {8] COURSE / SPEED
[4) SFPEED [9) BEARING / DISTANCE

The user may now enter a start position. The format for entering the information
is always the same as presented on the screen, e.g. to enter the latitude:

* Enter ‘N’ for north or 'S’ for south in upper or lower case lefters.

38

- Enter four digits, two for degrees of latitude and two for minutes of latitude.

« Enter a decimal point.

+ Enter one digit for decimal fractional minutes of latitude.

After the start position is entered, the user is prompted to enter course and

speed vaiues, uen the program takes over control and autematically selects option

number [6] (DISPLAY PRESENT POSITION). This marks the end of the start up

sequence. The system will continue to display the updated present position until the

user selects another choice from the menu, which is continuously displayed on the

screen.

2. Run Time Options

Generally an option stays in effect until another one is selected. The system

updates the screen once every second as long as it is in one of the DISPLAY options

[6] to [9]. In the ENTER / UPDATE options the user can take as much time as he

needs to complete an input. The following options are provided:

« ENTER / UPDATE

« [1] PRESENT POSITION

- [2] WAYPOINT

+ [3) COURSE

- [4] SPEED
. [5] STEER TO WAYPOINT

To enter a present position into the system, behaves
as described in the start up section.

To enter up to three waypoints, numbered 1 to 3.
After selection prompts for a waypoint number, then
the position can be entered. The detault value for all
three waypoints is NO000.0 W00000.0.

To enter a course, which is one of data elements
necessary for the system’s computations. This is an
artificial option, which not be available on an
operational system, since COURSE and also SPEED
would be provided by other aircraft systems.

To enter a speed value ranging from 1 to 499 Kits.
To select one of the waypoints as the next
destination. Once a waypoint has been selected the

bearing and distance calculations refer to this
waypoint. The default value is 1.

39

» DISPLAY
- [6] PRESENT POSITION
- [7] WAYPOINT

« [8] COURSE / SPEED
* [9] BEARING / DISTANCE

To display the present pasition of the aircraft.

To display the coordinates of a waypoint, wiiich has
been selected with option [5].

To display the present values for course and speed.
To display a true bearing and distance from the

aircraft's present position to a waypoint, which has
been selected with option [5].

40

V. CONCLUSIONS

A. THE ADA LANGUAGE

Ada cs a programming language is ona of the moet powerful languages available
today, which has good, but also bad attributes associated with it.

1. Object Oriented Programming (OOP)

The constructs available in the language give it characteristics of object oriented
programming language. Packages are an example for data abstraction and
encapsulation; they enable the programmer to create abstract data types in a true
fashion. If private types or even fimited private types are used in the implementation,
the only operations available for an abstract data type are those defined by the
programmer, or in the case of private types additionally the ‘assignment’ and 'check for
equivalence’ operation.

A major ingredient of OOP is inheritance. The ‘'with’ statement in Ada aliows a
a variable or object of a certain type to inherit characteristics, which e.g. might be
defined in a package.

2. Strong Typing

Another characteristic, strong typing, is a very important aspect in connection
with large software systems, which are, among others, one reason for Ada's existence.
Strong typing can make programming a very cumbersome task, since many type
conversions may be necessary. On the other hand it far outreaches this disadvantage,
when it comes to debugging a program as all programming errors that result in type
inconsistencies are detected at compile time already. For languages that support no or
almost no static type checking e.g. 'C’ this checking must be done at run time. But then

the amount of typing errors detected depends on the data on which the program

41

operates. This is one fact that makes 'C’, from a software engineering point of view,
unsuitable for large software systems.
3. Information Hiding
information hiding is implemented very well in the Ada language. Good examples
of thic are the packaqe< nrovided with the different compilers. The user is only provided
with the interface or specification of the packages, which is always the same for a
cenrtain package. Whereas the sourcecode for the body, which may be different for each
implementation, is usually not accessible.
4. Concurrency
Ada makes multitasking possible only using constructs defined within the
language in the form of tasks and other related constructs, like rendezvous and the
pragma ’priority’. This should be a good asset in terms of efficiency and performance,
however, as of now, no compiler is available for any multi processor system, but that
fact should be eliminated by time. since compilers have already been announced for
multiprocessor systems.
5. Portabliity
Portability is a more negative aspect of the Ada language, even thougn the Ada
Joint Programming Office keeps a strict eye on the quality of the available compilers
by validating only those compilers which successfully work on a set of test programs.
At first glance this should ensure portability. The problem lies in the specification of
the language, which is manifested in the ALRM [Ref. 10] and which in some places
leaves too much leeway for the implementation of the compiler. The best example is
the pragma 'priority’ which allows the assignment of relative importance on a set of
tasks, thereby controlling their order of execution. The pragma has to implemented in
every compiler, however the range of legal values is left to the particular

implementation. which results in quite different values. Since not all compilers provide

42

this information in their documentation, a smali program to check those values on any

compiler, regardless of the documentation is shown below.

with text_io;
use text io;
with systen;

procedure prioc is

package priority io is new integer io(system.priority):
use priority io;

begin
new_page;
put ("min value for priorxity : ");
put (system.priority’ first);
new_line;
put ("max value for priority : ");
put (system.priority’last);
new_line:

end;

A test run on three different compilers, which were available at the time of this

research produced the following results.

COMPILER VALUES FOR PRAGMA PRIORITY
AdaVantage Verson 20 1.2
INTEGRADA Version 4.01 0..0

Verdix Version 5.5 0. 99

This is only one example of a deficiency in the language specification.

The next factor contributing to Ada's bad portability is the lack of standard
libraries, provided with the compilers. As an example one might expect a package for
mathematica! functions, which are not inciuded in the language standard. Again when
comparing the three above mentioned compilers we have the following picture:

AdaVantage INTEGRADA Verdix Ver5.5

Package name math_lib mathliib math

function ARCTAN(X) atan(x) arctan(x) arctan(x)

43

6. Hard Real Time Systems
As shown in Chapter IV.D on page 34 the programmer has possibilities to
influence the execution timing of a programming unit; the example also showed, that
a delay is only a minimum waiting period, meaning, that there is no way to tell the
maximurn waiting time, which is unacceptable in hard real time systems, where
deadlines have to be met. This aspect of the language is a separate research area in
itself and shall not be exploited any further here. The interested reader can find further
information in [Ref. 13, 14, 15, 16, 17].
7. Final Comment
Summarizing the points made above, the Ada language is very powerful and
suited for its purpose. The negative points should not be considered as an attempt to
detract from that fact, but is an attempt by the author to show some areas where

further improvement is needed.

B. SPECIFICATION AND PROTOTYPING

The languages SPEC and PSDL are not for programming purposes. Conceptually
they reside at a higher level of abstraction than programming languages. The
development team no longer describes a program in terms of HOW to complete a
certain task, but by specitying WHAT tasks are to be completed. Due to their complexity
and size. large software systems cannot be realized using traditional programming
languages and software engineering techniques only. No single person can comprehend
a complete system, therefore the need for communication between all people involved
in the development of such a system arises. Furthermore it is becoming more and
more difficult to prove the correctness of a program, or to do at least some testing to
insure its correctness to a certain level. SPEC is one attempt to solve this problem. It

is suitable to develop the specification for a program instead of the program itself. Since

the language is strictly based on mathematical rules it has the potential to solve the
‘proof of correctness’ problem or at least bring it closer to a solution.

The problem with all specification languages, SPEC is only one of them, lies in
their application. As the small example, developed in Chapter lll, shows, specifications
grow rapidly and become incomprehendable at the same pace. It is obvious that
automated tools are necessary to use SPEC on a production level to keep track of the
deveiopment stage and to insure the completeness and consistency of a specification.
As already mentioned some of those tools are presently under construction. Their
development is supported by the mathematical foundation of SPEC, a negative aspect
however is the fact that not every specification can be automatically translated into
executable code.

A type checker is needed to check that all types used within a specification at
different levels of decomposition conform, whereas a syntax directed editor must take
care of the completeness and syntactical correctness of all language constructs used.
Another very important tool is a development database, which retains the development
up to the current stage. This is important to provide the capability to go back and forth
between different levels of decomposition.

SPEC addresses the problems of reliability. modifiability and other reiated problems
mentioned in the Introduction. The other main problem areas in software development
are cost and feasibility: PSDL is an attempt to cope with them. It aids the development
process. After the requirements for a project have been manifested, PSDL can be used
to construct a prototype which in the long run will be a piece of executable code. PSDL
does not have a mathematical foundation like SPEC, hence it cannot be used to attack
the 'correctness’ problem.

The tool development for PSDL has proceeded much further than that for SPEC.

Even though it is not possible to create an executable prototype without manual

45

interaction at the present time, tcols already available are instrumental for the completed

system as their application demonstrated in Chapter II.

C. THE COMBINATION OF PSDL AND SPEC

So far SPEC and PSDL have been examined as separate systems. The latest
development in the software engineering discipline Is marked by DARPA's (Defence
Advanced Research Projects Agency) decision to create a language on top of Ada
[Ref. 18]. This language is to provide all the capabilities presently designed in SPEC
and PSDL. Future emphasis should be placed on the fusion of the two languages
combing their capabilities. Care must be taken that the resulting language is not just a
superset. which contains the two languages as complete subsets. Overlapping
constructs and methods must be eliminated. Once a minimal version of the system is
operational. it can be used to improve on itself, which should speed up the development

dramatically.

46

APPENDIX A. INS SPECIFICATION IN PROTOTYPE DESCRIPTION LANGUAGE (PSDL)

OPERATOR INS

SPECIFICATION

INPUT Present Position : POSITION;
Course : FLOAT;
Speed : INTEGER;
Wp 1 : POSITION;
WP 2 : POSITION;
Wp_3 : POSITION;
WP _number : INTEGER;
Ne;_time : TIME;
New_choice : INTEGER;

CUTPUT Fresent_Position : POSITION;
Course : FLOAT;
Speed : INTEGER;
WE 1 : POSITION:;
WE 2 : POSITION;
WE_3 : POSITION;
WE_number : INTEGER;
Bearing : FLOAT;
Distanrce : FLOAT;

END
IMFLEMENTATION GRAPH

Old_choice.Check_keyboard --> Check_keyboard

Old chcice.Check_keyboard =--> Display handler

Neh chcice.Check _keyboard --> Display handler

BearAnq Compute bearing distance --> Display handler
Distance.Compute bearlng distance --> Display handler
Speed.DPisplay handler --> EXTERNAL
Speed.Display_handler --> Compute_pcsition
Course.Cisplay_handler --> EXTERNAL
Course.Display_handler --> Compute_position

0ld Position.Display handler --> Compute_position
Bearing.Display handler --> EXTERNAL
Distance.Dispiay_handler --> EXTERNAL

WE_1.Display handler --> EXTERNAL

WP_2.Display handler --> EXTERNAL

WP_3.Display handler --> EXTERNAL

WP_number .Display handler --> Compute_ bearing distance
WE 3 Display handler --> Compute bearing_distance

wy 2 Display_handler --> Compute_bearing distance
WP_l Display handler ~-> Compute_bearing distance
WP_number.Display handler --> EXTERNAL

Most recent position.Display handler =--> EXTERNAL
New _chcice .EXTERNAL =--> Check_keyboard

Old time.Compute position --> Compute position
Most_recent_posltlon .Compute position --> Display handler
Mcst recent position.Compute position --> Compute_ bearing distance
WE_number .EXTERNAL --> Display handler
New_time . EXTERNAL --> Compute position

WE_1.EXTERNAL --> Display_ handler

WP_2.EXTERNAL --> Display handler
WP_3.EXTERNAL --> Display_ handler
Present Position.EXTERNAL --> Display handler
Course .EXTERNAL ~-> Display handler

Speed.EXTERNAL --> Display handler

DATA STREAM

Bearing
Distance
Speed
Course
WP number
WE_3
WE_2
WP 1

0ld Position

Old:choice
New_choice

Most_recent_position

CONTROL CONSTRAINTS

OPERATOR DISPLAY_ HANDLER

PERIOD 1s

o we se

B

FLOAT;
FLOAT;
INTEGER;
FLOAT;
INTEGER;
POSITION;
POSITION;
POSITION;
POSITION;
INTEGER;
INTEGER;
POSITION;

OFERATOR COMFUTE_BEARING_DISTANCE

PERIOD 1s

OPERATOP COMFUTE_POSITION

PERIOD 1s

DESCRIFPTION

{This is the root operator. It is composite and consists of the
compesite operator DISPLAY HANDLER and the atomic operators
CHECK_KEYBOARD, COMPUTE_BEARING DISTANCE and COMPUTE_POSITION)

END

OPERATCR CHETEK_KEYBTARD
SFECIFICATION
INPUT New_chcice

OUTPUT Old_<hcice
New choice

STATE Old_chcice

END

IMPLEMENTATION ADA CHECK_KEYBOARD

INTEGER;

INTEGER;
INTEGER;

INTEGER INITIALLY 6;

(The atomic operator CHECK_KEYBOARD requires visibility to datastreams

OLD_THCICE and NEW_CHOICE in IN:)

END

48

OFERATOR DISPLAY HANDLER

SPECIFICATION

INPUT Old_choice : INTEGER;
New choice : INTEGER;
Bearing : FLOAT;
Distance : FLOAT;
Most_recent_ position : POSITION;
Speed : INTEGER;
Course : FLOAT;
WF number : INTEGER;
WP 1 : POSITION;
W 2 : POSITION;
WE 3 : POSITION;
Pr;sent_Position : POSITION;

OUTPUT Speed : INTEGER;
Course : FLOAT;
Bearing : FLOAT;
Distance : FLOAT:
WF 1 : POSITION;
WE 2 : POSITION;
WE_2 : POSITION;
WF number : INTEGER;
0l1d_Position : POSITION;
Most _recent pesition : POSITION:;

END
IMPLEMENTATICN GRAPH

Present _Position.Enter present position =--> WP_buffer 0
We_1. Enter _waypoint --> WP_buffer 1

WE 2 Enter wajpcinb --> WF_buffer 2

WE_2.Enter_ waypoint --> WP buffer 3

Course.Enter course --> Course buffer

Speed.Enter speed --> Speed_ buffer

WF_number.Enter_steer tc_waypcint --> WP_number buffer
Most _Recent_F sition. Dlspla,_present_p031tlon --> EXTERNAL
WE Numbex Dlsplay waypcint --> EXTERNAL

WE_ 1.Di aplay wa 'point =--> EXTERNAL

WP_ Dlsplay~ua)ph1ﬂt --> EXTERNAL

WE_3.Display waypcint --> EXTERNAL

Bearing.lisplay bearing and distance =--> EXTERNAL
Distance. Display bearing ang distance =--> EXTERNAL
WE_Number. Dlspla) bearing_, and _distance --> EXTERNAL
Course. Display course and speed -=> EXTERNAL
Speed.Display ccurse and _speed ~-> EXTERNAL

Most Recent Position. WP buffer 0 =--> Display present position
Moat Pecen* Pos;tlon WP buffer 0 --> EXTERNAL

Cld_ Positicn.WE _buffer 0 --> EXTERNAL

WP 1 WE_buffer 1 --> Dlsplay _waypoint

WP 2 WE buffer 2 --> Display waypoint

WP 3 WP buffe* 3 =--> Display_ waypoint

Bearlnc Bearlna buffer --> Display bearing_and_distance
Distance.Distance buffer --> Display bearing_ and distance
Ccurse. Ccurse_buffer --> Display_ccu se_and_speed
Speed.Speed buffer --> Display course and_speed
WP_number.WP_number buffer --> Display _waypoint

WE Number WE numbe' buffer --> Display bearing and_distance
CoUrse.EXTERGAL --> Enter _course

Speed .EXTEFNAL --> Enter_speod

WE_number .EXTEFNAL --> Enter_ steer to waypoint

49

END

Bearing.EXTERNAL -~-> Bearing_buffer
Distance .EXTERNAL --> Distance_buffer
PresentﬁPosition.EXTERNAL ~-> Enter_presert poaition
Most Recent Position.EXTERNAL ~-> WP _buffer
WP Number EXTERNAL --> Enter waypo;nt

WP 1.EXTERNAL --> Enter_waypoint

WP 2 EXTERNAL --> Enter_waypoint

WP_ “3.EXTERNAL --> Enter _waypoint

DATA STREAM

Present Position : POSITION;
WP 1 : POSITION;
WP_2 : POSITION;
Wp_3 ¢ POSITION;
Course : FLOAT;
Speed : INTEGER;
WP_number : INTEGER;
Most_Recent Position : POSITION;
Bearing : FLOAT:
Distance : FLOAT;
WF_Number : INTEGER;

DESCEIPTION

0

{The composite operator DISPLAY HANDLER CONSISTS of the atomic
operators ENTER_PRESENT_] POSITION, ENTER _WAYPOINT, ENTER_CCURSE,

ENTER_SPEED, ENTER STEER TO WAYPOINT,
DISPLAY _WAYPOINT, DISPLAY BEARING _AND

DISPLAY COURSE _AND_SPEED, WP BUFFER O
WF BUFFER _3, BEARING BUFFER “DISTANCE
SPEED _BUFFER and WP NUMBER _BUFFER. It
streams in INS}

OPERATOR COMFUTF_BEARING_DISTANCE

SFECIFICATION
INFUT WF_number : INTEGER;
WE_3 : POSITION;
Wp_Z2 : POSITION;
WE_1 : POSITION;
Most_recent_pcsLtion : POSITION;
OUTPUT Bearing : FLOAT;
Distance : FLOAT;
END

IMPLEMENTATION ADA COMPUTE BEARING_DISTANCE

END

datastreams MOST_RECENT POSITION
WP_NUMBEF in INS)

50

DISPLAY PRESENT POSITION
DISTANCE

WP_BUFFER_1, WP_BUFFER_2,
BUFFER, COURSE_BUFFER,
requires visibility to all

{The atomic operator COMPUTE_BEARING DISTANCE requires visibility to
BEARING, DISTANCE, WP_1, WE_2, WF_3 and

data

OFERATOR COMPUTE_POSITION

SPECIFICATION
INPUT Speed : INTEGER;
Course : FLOAT;
Cld _Fosition : POSITION;
New_time : TIME;
OUTPUT Most_recent_position : POSITION;
STATE Old_time : TIME;

END
IMPLEMENTATION ADA COMPUTE_POSITION

{The atomic operator COMPUTE_POSITION requires visibility to datastreams
COURSE, SPEED, OLD POSITION and MOST_RECENT-POSITION in INS}

END

CFEFRTOER ENTEF_PRESENT_POSITION

SEECIFICATICN
INFUT Present Pcesition : POSITION;
OUTPUT Present_Fcsition : POSITION:
ENL

IMPLEMENTATION ADA ENTER_PRESENT_POSITION

{The atomic operator ENTER_PRESENT_POSITION requires visibility to
datastream PRESENT PCSITION in DISPLAY_ HANDLER}

END

OFEFRTOR Wr_BUFFEP_O

SPECIFICATI?N
INFUT Present Fosition : POSITION;
Mcst _recent pesiticon : POSITION;
OUTPUT Ol1d_Fcsition : POSITION:;
Mcst_recent position : POSITION;
END

IMPLEMENTATION ADA WP_BUFFER_O

{The atomic operator WP_BUFFER_ 0O requires vigibility to datastreams
PRESENT_POSITION, MCST_RECENT_POSITION and OLD_POSITION in DISFLAY HANDLER}

ENT

51

OPERATOF ENTER_WAYPOINT

SPECIFICATICN
INPUT WP_number : INTEGER;
WP_1 : POSITION;
WE_2 : POSITION;
Wp_3 : POSITION;
OUTPUT WP_1 : POSITION;
WF_2 : POSITION;
Wp_3 : POSITION;
END

IMPLEMENTATION ADA ENTER _WAYPOINT

{The atomic operator ENTER _WAYPOINT requires visibility to datastreams WP_1,
WP_2, WF_3 and WP_NUMBER in DISPLAY HANDLER}

END

OFEFATCJFR WE_BUFFEF_1

SFECIFICATICN
INFUT WE_1 : POSITION;
OUTPUT We _1 : POSITION:
END

IMPLEMENTATION ADA WF_BUFFER_1

{The atomic operatcr WF_BUFFEF_1 reguires visibility to datastream WF_1 in
DISELAY HANZLER}

END

OFERATUR WF_BUFFEFR_Z

SFECZIFICATICH
INPUT WF_2 : POSITION;
OUTPUT WP_2 : POSITION;
END

IMPLEMENTATION ADA WFP_BUFFEF_2

{The atcmic operatcr WE_BUFFEF_2 requires visibility tc datastream WP_2 in
DISFLAY HANDLEF)

END

52

OPERATOR WP_BUFFER_3

SPECIFICATION
INPUT WP_3 : POSITION;
OUTPUT Wp_3 : POSITION;
END

IMPLEMENTATION ADA WP_BUFFER_3

{The atonic operator WP_BUFFER_3 requires visibility to datastream WP_3 in
DISPLAY_HANDLER)

END

OPERATOR ENTER_COURSE

SFECIFICATICN
INPUT Course : FLOAT:
QUTPUT Ccurse : FLOAT;
END

IMPLEMENTATION ADA ENTER_COURSE

{The atomic operatcr ENTER_COURSE requires visibility to datastream COURSE
in DISFLAY_ HANDLER}

END

OFERATOF COURSE BUFFEF

SPECIFICATION
INPUT Course : FLOAT;
OUTPUT Ccocurse : FLOAT;
ENL

IMPLEMENTATION ADA COURSE_BUFFER

{The atomic operatcr COURSE_BUFFER requires visibility to datastream COURSE
in DISPLAY HANDLER)

END

53

OPERATOR ENTER_SPEED

SPECIFICATION
INPUT Speed : INTEGER;
OUTPUT Speed : INTEGER;
END

IMPLEMENTATION ADA ENTER_SPEED

{The atomic operator ENTER_SPEED requires viyibility to datastream SPEED in

DISPLAY HANDLER}

END

OPERATOR SPEED_BUFFER

SFECIFICATION
INFUT Speed : INTEGER;
OUTPUT Speed : INTEGER;

END

IMPLEMENTATION ADA SPEED BUFFER

{The atomic operator SPEED_BUFFER requires
DISPLAY HANDLER)

END

OPERATOR ENTER_STEER_T._WAYPOINT

SPECIFICATION
INPUT WF_number : INTEGER;
OUTPUT WF_number : INTEGER;
ENDC

IMPLEMENTATION ADA ENTER_STEER_TO_WAYPOINT

visibility to datastream SPEED in

{The atomic operator ENTER_STEER_TO WAYPOINT requires visibility to

datastream WP_NUMBER in DISPLAY HANDLER]

END

54

OPERATOR WF_NUMBER_BUFFER

SPECIFICATION
INPUT WP_number : INTEGER;
OUTPUT WP_number : INTEGER;
END

IMPLEMENTATION ADA WP_NUMBER_BUFFER

{The atomic operator WP_NUMBER_BUFFER requires visibility to datastream
WP_NUMBER in DISPLAY_HANDLER)

END

OPERATOR DISPLAY PRESENT_POSITION

SPECIFICATION
INPUT Most recent_ position : POSITION;
OUTPUTMost_recent_position : POSITION;
END

IMPLEMENTATION ADA DISPLAY PRESENT POSITION

{The atomic operator DISPLAY PRESENT POSITION requires visibility to
datastream MOST_RECENT_POSITION in DISPLAY HANDLER}

OPERATOR DISFLAY WAYPOINT

SPECIFICATION
INPUT WF_number : INTEGER;
WE_1 : POSITION:;
WE_2 : POSITION;
WE_3 : POSITION;
OUTPUTWP‘l POSITION;
Wp_2 : POSITION;
WE_3 : POSITION;
WF_number : INTEGER;
END

IMP.EMENTATION ADA DISPLAY_WAYPOINT

{The atomic operator DISPLAY WAYPOINT requires visibility to datastreams
WP_1, WP_2, WP_3 and WP_NUMBER in DISPLAY HANDLER)

END

55

OFERATOR DISPLAY COURSE_AND SPEED
SPECIFICATION

INPUT Course
Speed

OUTPUT Course
Speed

END

FLOAT;
INTEGER;

FLOAT;
INTEGER;

IMPLEMENTATION ADA DISPLAY_ COURSE_AND SPEED

{The atomic operator DISPLAY COURSE_ AND_SPEED requires visibility to
datastreams COURSE and SPEED in DISPLAY _HANDLER)

END

OPERATOR BEARING BUFFER
SFECIFICATION
INPUT Bearing
OUTPUT Bearing
END

IMPLEMENTATION ADA BEARING_BUFFER

FLOAT;

FLOAT;

{The atomi~ operator BEARING_BUFFER requires visibility to datastream

BEARING in DISPLAY HANDLER}

END

OPERATOF. DISPLAY BEARING_AND DISTANCE

SPECIFICATICN

INPUT Bearing
Distance
WE_number

OUTPUT Bearing
Distance
WP_number

END

o ae s

FLOAT;
FLOAT:
INTEGER;

FLOAT;
FLOAT;
INTEGER;

IMPLEMENTATION ADA DISPLAY BEARING_AND DISTANCE

{The atomic operator DISPLAY BEARING_AND DISTANCE requires visibility to
datastreams BEARING, DISTANCE and WP NUMBER in DISPLAY_ HANDLER)

END

56

OPERATOR DISTANCE_BUFFER

SPECIFICATION
INPUT Distance : FLOAT;
OUTPUT Distance : FLOAT;
END

IMPLEMENTATION ADA DISTANCE_ BUFFER

{The atomic operator DISTANCE_BUFFER requires visibility to datastream
DISTANCE in DISPLAY HANDLER}

END

57

APPENDIX B. ADA SOURCE CODE LISTING

-- UNIT DESCRIPTION

-- UNIT_SPS_REFERENCE
-- UNIT_CALLING_SEQUENCE
-- EXTERNAL_UNITS_CALLED

=~ INFUTS

-- QUTPUTS

-- CREATED | 23 January 19883

== AUTHOR | herbert guenterberg

-= DATE -~=-=--=-==- AUTHOR --—===-- REVISION # -- PR # ---=~TITLE --==-==-=-=

o - e = = o —— - — - ————— ——— —— =

-- This is the main program fcr the ins-simulator. Compilation sequence:

- Term_s.a,
- Term_b.a,
- Data_sto.a,
-- Mathutil.a,
- Navutil.a,
- Ins.a

-- To link on a UNIX based system with a VERDIX compiler:

-- a.ld -¢ ins ins =-ltermcap -lcurses

with TEYT I2:

use TEXT_TC:

with TERMINAL:

use TEFMINAZ;

with NAVUTIL;

use NAVUTIL;

with CALENDAF;

use CALENDAF;

with FLOATINZ PCTINT UTILITIES;

procedure ibo is

package FLOAT_UTIL is new FLOATING_PCINT UTILITIES (FLOAT);
use FLOAT UTIL;

package INT IO is new INTEGEPF_IOQ(INTEGER);
use INT IO:

-- initializaticn of variables

= (0.0, 0.0});

INITIAL POSITION : PCCITION
:= 0.0;

INITIAL COURSE : FLOAT

INITIAL SPEED : INTEGER := 0;
INITIAL BEARING : FLOAT := 0.0:
INITIAL DISTANTE : FLOAT := 0.0:

INITIAL WF : INTEGEFP := 1;

58

-- task declarations; names are selfexplanatory for each

task CHECK KEYBOARD is
entry START;
entry STOP;
entry CONTINUE;

end CHECK_KEYBOARD;

task COMPUTE_POSITION is
entry START;

end COMPUTE_POSITION;

task COMPUTE_BEARING DISTANCE is
entry START;
end COMPUTE_BEARING_DISTANCE;

task DISPLAY_ HANDLER is
entry MAKE CHCICE (CHOICE : in CHARACTER) ;
end DISPLAY HANDLER;

-- task bodies

task body CHECK _KEYBOARD is
NEW_CHOICE : CHARACTER := '6';
CLD_CHOICE : CHARACTER "€’ ;
TASK START : TIME;
TASK_DONE : TIME;
begin
accept START dc
DISPLAY HANDLER.MAKE CHOICE(NEW_CHOICE):
accept STOP: -
accept CONTINUE;
SPECIAL_IC;
end START:
loop
TASK_START := CLOCK;
if XIY FFESSED then
GET (NEW_CHOICE) ;
if NEW_CHCICE > 0’ and NEW_CHCICE <= ‘9’ then
if NEW CHOICE > '0' and NEW_CHOICE < '6’ then
CLEAP_LINE (3, 7);
NORMAL IO;
end if;
DISPLAY HANDLER.MAKE CHOICE (NEW_CHCQICE);
accept STOF; -
accept CONTINUE;
if NEW_CHCICE > '0’' and NEW_CHOICE < "6’ then
CLEAF_LINE(3, 7);
SPECIAL_IO;
end if;
end if;
end if;
if NEW_CHOICE < ’'6' then
DISPLAY HANDLER.MAFE CHOICE (OLD_CHOICE):
else h -
DISFLAY HANDLER.MAFE CHOICE (NEW_CHOICE);
end if; -
accept STOF:
accept CONTINUE:
if NEW _CHOICE > ’'5’ then
OLD_CHOICE := NEW_CHOICE;

end 1f;
TASF_DONE := CLOCK;
delay 1.0 - (TASK_DONE - TASK_START};

59

task

end loop;
end CHECK_KEYBOARD:

task body COMPUTE POSITION is
ACTUAL _TIME : TIME;
OLD_TIME : TIME;
INTERVAL : DURATION := 0.0;
PRESENT_POSITION : POSITION;
TEMP_COURSE : FLOAT;
TEMP_SPEED : FLOAT;
INT_SPEED : INTEGER;
TASK_START : TIME;
TASK_DONE : TIME;

begin

accept START do
OLD_TIME := CLOCK;

end START;

loop
TASK_START := CLOCK;
ACTUAL TIME := CLOCK;
INTERVAL := ACTUAL TIME - COLD TIME;
OLL TIME := ACTUAL TIME: -

WE_BUFFER(0) .RECALL (PRESENT_POSITION) ;
COURSE_BUFFER.RECALL (TEMP_COURSE) ;
SPEED_BUFFER.RECALL (INT_SPEED) ;

TEMF_SPEED := FLOAT(INT_SPEED);
UPDATE_POSITION (INTERVAL, PRESENT_POSITION, TEMF COURSE,
TEMF_SPEED) ; -
WP_BUFFER (0) . STORE (PRESENT_POSITION) ;
TASK_[ONE := CLOCK; -
delay 1.0 - (TASK_DONE - TASK_STAV.):
end lecop;

end CCMFUTE_POSITION:

task body COMFUTE_BEARING DISTANCE is
PRESENT POCITION : POSITION;
TARGE*_POSITION : FOSITION;
TEMF_BEARING : FLOAT:
TEMF _DISTANCE : FLOAT;
WE_NO : WAYFOINT_ RANGE:;
TAEK_STAPT : TIME:
TASF DONE : TIME;
begin
accept START:
loog
TASY. START := CLOCK:
WE NUMBEP _BUFFER.RECALL (WE_NO) ;
WF BUFFEF(”) RECALL (PRESENT _POSITION) ;
wWp_ _BUFFER(WF_NO) . RECALL (TARGET _POSITION) ;
BEARING DISTANCE(PRESENT POSITION, TARGET _POSITIUN,
TEMP BEAP’NG, TEMP DISTANCE),
BEARING BUFFEF. STORE (TEMP _BEARING) ;
DISTANCE _BUFFEP. STORE (TEMP _DISTANCE) ;
TASK DONE := CLOCK;
delay 1.0 ~ (TASK_DONE - TASK_START) ;
end loog; -
end COMPUTE_BEAPING DISTANCE;

task body DISPLAY HANDLER is
OLD_CHCICE : CHARACTER := 1’
NEW_CHOICE : CHARACTER := '6'

~e e

procedure ENTER PRESENT POSITION is
begin
CHECK_KEYBOARD .STOP;
GOTOXY(DR - 3, Cl);
PUT("ENTERING PRESENT POSITION");
GET_POSITION (0);
CHECK_KEYBOARD.CONTINUE;
end ENTER _PRESENT_POSITION;

procedure ENTER_WAYPCINT is
WP_NO : INTEGER := MAX_WAYPOINTS + 1;
begin
CHECK KEYBOARD.STCP;
GOTOXY (DR - 3, Cl);
PUT ("ENTERING WAYPCINT NO:");
while WE_NO > MAX WAYPOINTS loop
GOTCXY (DR, C1):
FUT ("ENTEE A WAYFOINT NUMBER : ");
GET (WF_N2) ;
end loop:
GOTOXY (DR - 3, C2);
PUT (INT_TC_CHAR(WF_NO));
GET_POSITICN(WF_NC);
CHECK_KEYBOARL .CONTINUE:
end ENTEF_WARYPOINT;

procedure ENTEER_COURSE is
begin
CHECK_KEYBOARD.STOF;
GET_COURSE;
CHECK_KEYBOARD.CONTINUE:
end ENTER_COURSE;

prccedure ENTEF SFEED is
begin

CHETY KEYBOCAFD .STOF;

GET_SFEEL:

CHECY_ FEYBTAPD .CONTINUVE;
end ENTEF_SFEED;

procedure ENTEP_STEEE _TC WAYPCINT is
WE NC INTEGER := MAY WAYFCINTS + 1;
bezin
CHECK_KEYBOARD .STOF;
while WF NC > MAX WAYPOINTS loop
GOTOXY(DE, C1);
PUT("ENTEF THE TARGET WAYPOINT NUMBER : ");
GET (WP NOj ;
end loop?
WF_NUMBEF_BUFFEP.. STORE (WF_NO) ;
CHECK_KEYBOAPD .CONTINUE;
end ENTEF_STEEP_ TC_WAYPCINT;

61

procedure DISFLAY PRESENT_POSITION is
PRESENT_POSITION : POSITION;

begin
CHECK_KEYBOARD.STOP;
CLEAR LINE (DR, 1);
WP_BUEFER(O).RECALL(PRESENT_POSITION);
DISPLAY POSITION (PRESENT_POSITION);
GOTCXY (DR, C2 + 20);
PUT ("PRESENT POSITION");
CHECK_KEYBOARD .CONTINUE;

end DISPLAY PRESENT_POSITION;

procedure DISPLAY WAYPOINT is
WP_NO : INTEGER;
WAYPOINT : POSITION;

begin
CHECK_KEYBOARD.STOP;
WP_NUMBER_BUFFER.RECALL (WP_NO) ;
CLEAR_LINE(DR, 1);
WP_BUFFER (WP_NO) .RECALL (WAYPOINT) ;
DISPLAY POSITION (WAYPOINT);
GOTCXY (DR, C2 + 20);
PUT ("WAYPCINT ") :
PUT(INT_TC_CHAR(WP_NO)):
CHECK KEYBOARD .CONTINUE;

end DISPLAY WAYPOINT:

procedure DISFLAY COURSE_AND_ SPEED is
T COURSE : FLOAT:
INT_SPEED : INTEGER;
T_SPEED : FLOAT;

begin
COURS BUFFEP RECALL (T_COURSE) ;
SFEEr UFFER. RECALL(INT SPEED) ;
T_ SPEED = :LOAT(INT_SPEED),
CHE”K_KEYBOARD.STOP;
GOTCY Y (DR, Cl);
PUT(FLOAT_TO_STRING(T_COURSE)) ;
GOTCXY (DR, C2):
PUT(FLOAT_TO_STRING(T_SPEED)):
CHECK KEYBOARD ,CONTINUE;

end DISPLAY COURSE_AND_ SPEED;

procedure DISPLAY BEAPING_AND DISTANCE is
T BEARING : FLOAT;
T DISTANZE : FLOAT;
WE_NT : INTEGEF;

begin
CHECK_KEYBOARD.STOP;
BEARING_BUFFER.RECALL (T_BEARING) ;
DISTANCE BUFFER.RECALL (T_DISTANCE) ;
WP _NUMBER_BUFFER.RECALL (WF_NO) ;
GOTOXY (DR, Cl);
PUT (FLOAT_TO_STRING(T_BEARING));
GOTOXY (DR, €2 - 5):

PUT (FLOAT_TO_STRING(T_DISTANCE));
GOTOXY(DP, C2 + 20);
PUT{INT_TO_CHAR (WP _NO)):
CHECF._REYBOARD .CONTINUE;

end DISFLAY BEARING_AND DISTANCE;

62

begin
--display_handler
loop
accept MAKE CHCICE (CHOICE : in CHARACTER)
NEW_CHOICE := CHOICE;
end MAKE CHOICE:;
if OLD_CHOICE /= NEW_CHOICE then
case NEW_CHOICE is
when 6’ | 7' =>
PREPARE_POSITION DISPLAY:
when '8’ =>
PREPARE_COURSE_SPEED_DISPLAY;
when 9/ =>
PREPARE_BEARING_DISTANCE_DISPLAY:
when others =>
null;
end case;
OLD_CHOICE := NEW_CHOICE;
end if;
case NEW_CHCICE is
when "1’ =>
ENTER_PRESENT_POSITION;
when 27 =>
ENTER_WAYPOINT;

when '3’ =>
ENTEP_COURSE:
when 4’ =>

ENTER_SFEED;
when "5’ =>
ENTER_STEEF_TC_WAYPOINT:
when 6’7 =>
DISPLAY PRESENT POSITION;
when 7' =>
DISFLAY_ WAYPOINT;
when "8/ =>
DISPLAY COURSE_AND SPEED;
when Q' =>
DISPLAY BEARING AND DISTANCE;
when others =>
null;
end case;
end loop:;
end DISPLAY HANDLEF;

begin ~-- MAIN
-- initialize data buffers

for WP_NT in WAYPCINT RANGE loop
WP_BUFFER (WP_NC) .STORE (INITIAL POSITION);
end loop:! -
COURSE_BUFFER.STORE (INITIAL_COURSE) ;
SPEED_BUFFER.STCRE (INITIAL SPEED);
BEARING_BUFFER.STORE(INITIKL_BEARING);
DISTANCE BUFFEF.STORE(INITIAL DISTAICE);
wi _NUMBEP_BUFFEF .STORE (INITIAL WF);

63

do

-- initialize screen and get initial user input

PREPARE_SCREEN;
GET_POSITION (0) ;
GET_COURSE;
GET_SPEED;
SPECIAL_IC;

-- start tasks
COMPUTE_POSITION.START;
COMPUTE_BEARING DISTANCE.START;
CHECK_KEYBOARD .START;

end INS;

64

-- UNIT NAME | mathutil.a
- UNIT:DESCRIPTION
-- UNIT_SPS_REFERENCE | none

-- UNIT_CALLING_SEQUENCE
-~ EXTERNAL_UNITS_CALLED | none

-- INPUTS

-- OUTPUTS

~—- CREATED i 17 November 1988

=- AUTHOR { herbert guenterberg

-- DATE ----~-=---—- AUTHOR -~------ REVISION § -- PR § -——-- TITLE -=-~--===co~-

-- This package provides functions which are not specific to this application
-- and are not provided by the standard math library. The names of the

-- functions and procedures and their purpose are self explanatory. They are in
-- part taken from: Grady Booch; Software components with Ada.

-~ -~ - = - - 4 - — - An & = - -

generic
type NUMBEPR is digits <>;

package FLOATING POINT UTILITIES is
type PASE 18 range 2 .. 16;
type NUMBERS is array (POSITIVE range <>) of NUMBER:
function INTEGER_PART (THE_NUMBER : in NUMBER) return INTEGER;
function REAL_PART (THE NUMBER : in NUMBER) return NUMBER;
function FLOOR (THE_NUMBER : in NUMBER) return INTEGER;
function CEILING (THE NUMBER : in NUMBER) return INTEGER;
function IS_POSITIVE (THE_NUMBER : in NUMBER) return BOOLEAN;
functien IS_NEGATIVE (THE_NUMBER : in NUMBER) return BOOLEAN;
function INT_TO_CHAR (INNUM : in INTEGER) return CHARACTER;

function CHAP_TC_INT (INNUM : in CHARACTER) return INTEGER;

end FLOATING PCINT_UTILITIES;

package body FLOATING_POINT_UTILITIES is

function INTEGER_PART (THE_NUMBER : in NUMBER) return INTEGER is
begin
if IS_NEGATIVE (THE_NUMBER) then
return CEILING (THE_NUMBER);
else
return FLOOR (THE_NUMBEP);
end if;
end INTEGER_PART;

function REAL_PART (THE_NUMBER : in NUMBER) return NUMBER is
begin

return abs (THE_NUMBER - NUMBER(INTEGER_PART (THE_NUMBER))) ;
end REAL_PAPT:

65

function FLOOR (THE_NUMBER : in NUMBER) return INTEGER 1is
RESULT : INTEGER := INTEGER(THE_NUMBER);
begin
if NUMBER (RESULT) > THE_NUMBER then
return (RESULT ~ 1):
alse
return RESULT;
end if;
end FLOOR;

function CEILING (THE_NUMBER : in NUMBER) return INTEGER is
RESULT : INTEGER := INTEGER(THE_NUMBER) ;
begin
if NUMBER(RESULT) < THE_NUMBER then
return (RESULT + 1);
else
return RESULT;
end if;
end CEILING;

function IS_PCSITIVE (THE _NUMBER : in NUMBER) return BOOLEAN
begin

return (THE_NUMBEF > 0.0);
end IS PCSITIVE;

function IS_NEGATIVE (THE_NUMBER : in NUMBER) return BOOLEAN
begin

return (THE_NUMBER < 0.0);
end IS_NEGATIVE;

function INT_TO_CHAR (INNUM : in INTEGER) return CHARACTER is
OQUTNUM : CHARACTER := '0';
begin
case INNUM is
when 0 =>

OUTNUM := '0’;
when 1 =>
CUTHUM = "1’ ;
when 2 =>
QUTNUM := '2/;
when 3 =>
CUTHUM := '3’ ;
whern 4 =>
QUTNIM = "4’ ;
when B =>
QUTRUM := '5',;
when 6 =>
OUTNUM := '€’';
when 7 =>
OQUTNUM := 7' ;
when 8 =>
OUTNUM := "8 ;
when 9 =>
OUTNUM := '9’';
when others =
OUTNUM := '0';

end case;
return OUTNUM;
end INT_TO CHAF;

66

is

is

function CHAR_TC_INT (INNUM : in CHARACTER) recurn INTEGER is
OUTNUM : INTEGER

begin

case INNUM
when ‘0’
OUTNUM
when 1’
OUTNUM
when '2’
OUTNUM
when '3’
OUTNUM
when ’"4°
QUTNUM
when '35’
OUTNUM
when ' 6’
QUTNUM
when 7’
OUTNUM
when ‘8’
CUTNUM
when ' 9’
CUTNUM

end case;

return QUTNUM;
end CHAR TC INT;

is

:= 0;

end FLOATING POINT UTILITIES;:

67

= — - T - n - ————— - ——

-- UNTT_NAME | navutil.a
-- CSCI_NAME
-- UNIT_DESCRIPTION

-- UNIT_SPS_REFERENCE

-- UNIT_CALLING_SEQUENCE

-- EXTERNAL_UNITS CALLED | text_io, terminal, floating_point_utilities,
-- data_storage

-- INPUTS
-- QUTPUTS

-- CREATED | 19 November 1988

~— AUTHOR | herbert guenterberg

-~ DATE ====-====muu AUTHOR -------- REVISION # -- PR § —-~-- TITLE --=—===—~——-

o -~ - — - - - " -~ = A -~ = ——————

-- This package provides the routines needed in navigation programs in general.

with DATA_STORMAGE:
package NAVUTIL is
MAX WAYPCINTS : INTEGER := 3;
subtype WAYPOINT RANGE is INTEGER range 0 .. MAX WAYPOINTS:
type POSITION is
record
LATITUDE, LONGITUDE : FLOAT := 0.0;
end record;
subtype LAT_STR is STRING (1 .. T7);
subtype LON_STR is STRING (1 .. 8);
subtype SPEED _STR is STRING (1 .. 3);
subtype COURSE_STR is STRING (1 .. 5);
subtype OUT_STRING is STRING (1 .. 5);
function FLOAT TO_STRING(REAL IN : in FLOAT) returr SUT_STRING:
procedure GET_POSITION (WP_NC : in WAYPOINT_RANGE):
procedure GET SPEED;
procedure GET_COURSE;
procedure DISFLAY PCSITION (T_POS : in POSITTON);

procedure BEARING DISTANCE (POS1 : irn POSITION; POS2 : in POSITION; BRG : out

FLOAT; DIST : out FLOAT);

procedure UPDATE POSITION (INTERVAL : in DURATION; T_POS : in out POSITION;
COURSE : in FLOAT; SPEED : in FLOAT):

package POSITION_ STORAGE is new DATA_ STCRAGE (POSITION) ;
package FLOAT_ STORAGE is new DATA_ STORAGE (FLOAT) ;

package INTEGER_STORAGE is new DATA STORAGE (INTEGER) ;

68

WP BUFFER : array (0 .. MAX WAYPOINTS) of POSITION_STORAGE.BUFFER;

COURSE_BUFFER : FLOAT_STORAGE .BUFFER;
SPEED_BUFFER : INEGER_STORAGE.BUFFER;
BEARING_BUFFER : FLOAT STORAGE.BUFFER;

DISTANCE_BUFFER : FLOAT_STORAGE.BUFFER;
WP_NUMBER_BUFFER : INTEGER_STORAGE.BUFFER;

end NAVUTIL;

with TEXT_IO;

use TEXT_IO;

with TERMINAL;

use TERMINAL;

with MATH;

use MATH;

with FLOATING POINT UTILITIES;
with DATA_STORAGE;

package body NAVUTIL is

package FLOATUTIL is new FLOATING_POINT UTILITIES (FLOAT);
use FLOATUTIL;

function DEG_TC_RAD (DEG : in FLOAT) return FLOAT is
begin

return DEG * PI / 180.0;
end DEG_TC_RAD;

function RAD TO DEG (RAD : in FLOAT) return FLOAT is
begin

return RAD * 18C.C / PI;
end RAD_TO~DEG;

function FLOAT TC STRING(REAL IN : in FLOAT) return OUT_STRING is

INT : INTEGER := INTEGER_PART (REAL_IN);
DECIMAL : FLOAT := REAL_PART (REAL_IN);
T_STRING : OUT_STRING; - -
begin
T_STRING (1) := INT_TO CHAR(INT / 100);
INT := INT mod 1007
T_STPING(2) := INT_TO_CHAR(INT / 10):
T_STRING(3) := INT_TC_CHAR(INT mod 10);:
T_STRING(4) := '.';
T_STRING(S) := INT_TC_CHAR(INTEGER_FART (DECIMAL * 10.0));

return T_STRING:
end FLOAT_TO_STEING;

69

-- All procedures of name GET_*** receive an input string and convert it to
-- the appropriate data type

procedure GET POSITION (WP_NO : in WAYPOINT_ RANGE) is

T_LAT_S : LAT_STR;
T_LON_S : LON_STR;
LAT_DEG, LON_DEG : INTEGER;
LAT_MIN, LON_MIN : FLOAT;

SUCC1, SUCC2, SUCC3 : BOOLEAN := FALSE;
T_20S : POSITION := (0.0, 0.0);
begin
CLEAR_LINE (7, 5);
GOTOXY (DR, C1l);
PUT ("LATITUDE NOOOO.0") ;
GOTOXY (DR, C2);
PUT ("LONGITUDE W00000.0");
while not SUCC3 loop
T LAT § := "NO0OO.O";
GOTOXY (DR, C1 + 11);
PUT(T_LAT S);
GOTOY Y (DR, C1 + 11);
GET(T_LAT_S);

if T LAT_S(6) = ‘.’ and (T_LAT S(1) = 'N’ or T_LAT_S(1) = ‘n’ or
T_LAT_S{l) = S’ or T_LAT_S(1) = ’s’) then
SUCC1 := TRUE;
else
SUCC1 := FALSE;
end if;
LAT DEG := CHAR_TO_INT(T_LAT_S(2)}) * 10 + CHAR_TC_INT(T_LAT S(3)):
LAT MIN := (FLOAT(CHAR_TO_INT(T_LAT_S(4))) * 10.0 + FLOAT(CHAR_TCl_INT(
T_LAT_S(5))) * 1.0 + FLOAT(CHAR_TC_INT(T_LAT s(7))) * 0.1) / 6€0.0;
if LAT MIN < 1.0 then
SUCC2 := SUCC1l and TRUE;
else
SUCC2 := FALSE;
end if;
if (FLOAT(LAT DEG) + LAT _MIN) <= 20.C then
SUCZ2 := SUCC2 and TRUE;
else
SUCC2 := FALSE;
end i1f;
if T_LAT_S(1) = 'S’ cr T_LAT_S(l) = 's' then
T _PCS.LATITUDE := DEG_TC RAD(FLOAT(LAT DEG) + LAT MIN) * (- 1.0);
else
T_POS.LATITUDE := DEG_TC_RAD (FLOAT (LAT_DEG) + LAT_MIN);
end if;
end loop:!
SUCC3 := FALSE;
while not SUCC3 loop
T LON_S := "WO000C.0":

GOTOXY (DR, C2 + 10);
PUT(T_LON_S);
GOTOXY (DE, C2 + 10);
GET(T_LON_S);

if T~LON_S(7) = '.' and (T_LOH S(l) = W' or T_LON_S(I) = 'w! or
T_LON_S (1) = 'E' cr T_LON_S{(I) = 'e’') then
SUCCi := TRUE: -7
else
SUZZ1 := FALSE:
end 1if;

70

LON DEG := CHAR TO_INT(T_LON_S(2)) * 100 + CHAR_TO_INT(T_LON S(3)) * 10 +
CHAR_TO_INT(T_LON_S(4)); -

LON MIN := (FLOAT(CHAR_TO_ INT(T_LON S(5))) * 10.0 + FLOAT(CHAR TO INT(
T_LON_S(6))) * 1.0 + FLOAT(CHAR_TO_INT(T_LON_S(8))) * 0.1) / 60.0;

if LON_MIN < 1.0 then

8SUCC2 := SUCCl and TRUE;
else
SUCC2 := FALSE:;
end if;
if (FLOAT(LON_DEG) + LON_MIN) <= 180.0 then
SUCC3 := SUCC2 and TRUE;
else
SUCC3 := FALSE;
end if;

if T_LON S(1) = 'E’ or T _LON_S(1) = ‘e’ then
T_PCS.LONGITUDE := DEG_TO_RAD (FLOAT(LON_DEG) + LON MIN) * (- 1.0);
else
T _POS.LONGITUDE := DEG_TO_RAD (FLOAT (LON_DEG) + LON_MIN);
end if;
end loop;
WF_BUFFER(WF_NC) .STORE (T_POS);
end GET_POSITION.

procedure GET_SPEED 1is

succ : BOCLEAN = FALSE;
SPEED_S : SPEED_STR := "000C";
SFEED_I : INTEGER = 0;

begin

CTLEAR_LINE (DR, 3):

GOTOXY (DR, Cl1):

PUT ("SPEED :");

while nct SUCC loop
GOTOXY (DR, Cl + 8);
PUT(SEEEL_S) ;
GOTOXY (DR, Cl1 + B8):
GET (SPEED_S) ;
SPEED_I := CHAF._TC_ INT(SPEED S(1)) * 100 + CHAR TC INT(SPEED S/2)) * 10+

CHAP TC_INT(SFEET S(3)): T B

if SFEEC_I > 1 and SPEED_I < 5C0 then

SUCT := TRUE;
else

SUCC := FZLSE;
end 1€;

end lecofp;
SPEEC_BUFFEF.STDFE (SFEED_I);
end GET_SFEED:

71

p-ocedure GET COURSE is

SUCC1, SUCC2 : BOOLEAN := FALSE;

COURSE_S : COURSE_STR := "000.0";

COURSE_F : FLOAT i= 0.0;
begin

CLEAR_LINE (DR, 3):

GOTOXY (DR, Cl};

PUT ("COURSE :"

while not SUCC2 loop
GOTOXY (DR, Cl + 10);
PUT (COURSE_S) ;
GOTOXY (DR, Cl + 10);
GET (COURSE_S) ;

if COURSE_S(4) = ’'.’ then

sSucCl := TRUE;

else

SUCC1 := FALSE;

end if;

COURSE_F := FLOAT(CHAR_TO_INT(COURSE_S(1)) * 100 +
CHAR_TO_ INT (COURSE _S(2)) * 10 + CHAR _ TO _INT (COURSE_S(3))) +
FLOAT(CHAR TO INT (COURSE _8(5))) * 0.1; if COURSE_F >= 0.0 and COURSE_F <
359.9 then

SUCC2 := SUCCl and TRUE;
else
SUCC2 := FALSE;
end if;
end loop;

COURSE_BUFFER.STORE (COURSE_F);
end GET_COURSE;

-- All procedures of name DISPLAY *** take an input and convert it to a string
-- for screen cutput

procedure DISPLAY POSITION (T_POS : in POSITION) is

TEMPLAT : FLOAT := RAD_TO_DEG (T_POS.LATITUDE); -
TEMPLON : FLOAT := RAD_TO_DEG(T_POS.LONGITUDE) ;
T_LAT_S : LAT_STR;
T_LON_S : LON_STR:
LAT_DEG, LON_DEG : INTEGER; .
LAT_MIN, LON_MIN : FLOAT;
LAT MIN_INT, LON_MIN_INT : INTEGER;
LAT_MIN_REAL, LON_MIN_REAL : FLOAT;
begln
T_LAT_S(€) := '.’;
T_LON_S(7) := '.’;
if IS_NEGATIVE (TEMFLAT) then
T_LAT_S(1) := 'S’;
else -
T_LAT_S(1) := 'N’;
end if;
TEMPLAT := abs (TEMPLAT);
LAT _DEG := INTEGER_PART (TEMPLAT) ;
T_LAT_S(2) := INT_TO_CHAR(LAT_DEG / 10);

T_LAT_S(3) := INT TO CHAR(LAT DEG mod 10}
LAT MIN := REAL PART(TEMPLAT) * €0.0;
LAT MIN_INT := INTEGER PART(LAT MIN):

LAT_MIN_REAL := REAL_PART (LAT MIN): .
T_LAT_S(4) := INT_TO_CHAR(LAT_MIN_INT / 10);

T_LAT_§(5) := INT_TO_CHAR(LAT_MIN_INT mod 10);

T_LAT_S(7) := INT_TC_CHAR({INTEGER_PART (LAT_MIN REAL * 10.0));

if IS _NEGATIVE(TEMELON) then K

T LON_S(1) := 'E';

else
T_LON_S(1) := 'W';
end if;
TEMFLON := abs (TEMPLON);
LON_DEG := INTEGER PART(TEMFLON),
T_LON_S(2) := INT_ TO _CHAR (LON_DEG / 100):

LON_DEG := LON_DEG mod 100;
T LON_S(3) := INT_TO_CHAR(LON_DEG / 10);
T_LON_S(4) := INT_TO_CHAR(LON DEG mod 10);
LON_MIN := REAL PART (TEMPLON) * 60.0;
LON_MIN INT := INTEGER_PART (LON_MIN) ;
LON_MIN REAL := REAL_PART(LON_MIN);
T LON_S(5) := INT_TO_CHAR(LON_MIN_INT / 10);
T LON_S(6) := INT_TO_CHAR(LON_MIN_INT mod 10);
T_LON_S(8) := INT_TO_CHAR(INTEGER PART (LON_MIN_REAL * 10.0));
GOTOXY (DR, C1):
PUT(T_LAT S);
GOTOXY (DR, C2 - 5);
PUT(T_LON_S) ;
end DISPLAY POSITION;

preccedure BEAFINZ DISTANCE (POS1 : in POSITION; POS2 : in PCSITION; BRG

FLOAT: DIST : out FLOAT) is

LON1 : FLOAT := PCS1.LONGITUDE;
LONZ : FLCAT := POS2.LONGITUDE:
LATI1 : FLOAT := POS1.LATITUDE;
LAT2 : FLOAT := POS2.LATITUDE;
LON_DIFF : FLOAT := LONZ - LONI1;
ARC_DIFF : FLOAT :- 0.0;

D : FLOAT := 0.0;

B : FLOAT := 0.0;

procedure DISTANCE (LAT1 : in FLOAT; LAT2 : in FLOAT; LON_DIFF : in FLOAT;

IS8T : out FLOAT) is
D : FLCOAT := 0.0;
begin

L
if

SIN(LAT1) * SIN(LATZ) + COS(LAT1) * COS(LAT2) * COS(LON DIFF);
‘= 0.0 then -
D := - ARCTAN(SQRT(1.0 - D * D) / D) * 10800.0 / PI;
end 1f;
DIST := aks (D):
end DISTANCE;
bezin
CISTANCE (LAT1, LATZ, LON DIFF, DIST);
if LATl = LATZ then -
if LON1 < LCH2 then

lo]

BRS = 270.0;
else
BRG := 90.0;
end 1f;
end if;

if LON1 = LON2 then
if LAT1 > LATZ then

BRG := 180.0;
else
BRG := 000.0;
end if;
else
B SIN(LON DIFF) / (COS(LAT1) * SIN(LAT2) / COS(LAT2) - SIN(LAT1)

CCEZ(LON DIFF)
B := ARCTAN(B) * 190.0 ; BI;
i€

.

®
i
b

*

out

3

if LON1 > LON2 and LAT1 > LATZ then
BRG := 180.0 - B;

end if;

if LON1 > LONZ and LAT1 < LAT2 then
BRG := 0.0 - B;

end if;
if LON1 < LON2 and LAT1 > LATZ2 then .
BRG := 180.0 - B;
end if;
if LON1l < LONZ and LAT1 < LAT2 then
BRG := 360.0 - B; '
end if;

end BEARING_DISTANCE;

procedure UPDATE_POSITION (INTERVAL : in DURATION; T_POS : in ocut POSITION;
COURSE : in FLOAT; SPEED : in FLOAT) is
T COURSE : FLOAT := DEG_TO_RAD((Q0.0 - COURSE)):

LAT_INC : FLOAT := 0.0;
LON_INC FLOAT := 0.0;
DISTANCE :; FLOAT := 0.0;
begin
r ISTANTE := SPEED / 3600.0 * FLOAT (INTERVAL);
LAT_INT := DISTANCE * SIN(T_COURSE) / 60.0 * PI / 180.0;
LON_INC := DISTANCE * COS(T_COURSE) / 60.0 * PI / 180.0;
LON INC := LON INC / COS(T_POS.LATITUDE);
if COURSE = 0.C or COURSE = 360.0 or COURSE = 180.0 then
T~POS.LATITUDE = T~POS.LATITUDE + LAT_INC;
wlse
if COURSE = 90.0 cr COURSE = 270.0 then
T_PCS.LONGITUDE t= T~POS.LONGITUDE ~ LON_INC;
else
T _F25.LATITUDE := T _POS.LATITUDE + LAT_INC:
T POS.LONGITUDE := T_POS.LONGITUDE ~ LON_INC;
end if;
end if:

end UPLCATE POSITION;

end NAVUTIL:

74

-= UNIT:DESCRIPTION | SUPPORT TERMINAL INTERFACE

-~ UNIT_SPS_REFERENCE
-- UNIT_CALLING_SEQUENCE
-- EXTERNAL_UNITS_CALLED |

-- INPUTS

~=- OUTPUTS

-- CREATED | 17 November 1988

-- AUTHOR | herbert guenterberg, PUBLIC DOMAIN

== DATE ---~---=--=- AUTHOR =-====== REVISION § ~- PR § ~-~~- TITLE --===—c-—c=a-

-- This package supplies the atomic functions and procedures used by the main
-- program to modify screen output to fit the application

package TERMINAL is
DASH LINE : constant STRING :=

-- ceclumn and row definitions for screen output

Cl : INTEGER := 5;
T2 ¢ INTEGEER := 40;
DR : INTEGER := 7;

~-- UNIX specific procedures needed to allow monitoring keyboard interrupt
procedure NORMAL I0;
procedure SPECIAL IC;
-- clear the screen
prccedure CLEAF SCTREEN;
~- pesition the curscr anywhere on the screen
procedure GOTOXY (ROW, COLUMN : in INTEGER);
-- takes the first line and the number of lines tc be cleared
procedure CLEAF LINE (LINE, NUMBER : in INTEGER);

-- monitors keyroard interrupt has to be used in conjunction with NORMAL 10
-- and SPECIAL_10

function KEY_PRESSED return BOOLEAN;

-~ prepare the screen for different output modes
procedure PREFARE_POSITION DISPLAY:
procedisre PREFAFE COURSE_SFEED DISFLAY;
procedure PREPAFF _BEARING DISTANTE DISFLAY:

procedare FREFARE SCREEN:
e:d TEFMINAL:

75

- UNIT:DESCRIPTION | SUPPORT TERMINAL INTERFACE

-~ UNIT_SPS_REFERENCE
-- UNIT_CALLING_SEQUENCE

-- EXERNAL UNITS CALLED | TEXT 10, ASCII, CURSES, IOCTL, SYSTEM
-~ INPUTS -

--~ OQUTPUTS

-=~ CREATED | 17 November 1988

-~ AUTHOR | herbert guenterberg / PUBLIC DOMAIN

-- DATE --==----~>=-- AUTHOR -=~---~-~ REVISION # -- PR # -~—=-TITLE --=vce—=mue--

-- This package body is the only part of the program that contains TERMINAL
-~ specific ccde

with TEXT_IO;
use TEXT_IC;
with CURSES;
use CURSES;
with I0CTL;
use ICCTL:
with SYSTEM:
use SYSTEM;

package body TERMINAL is

package INT_IC is new TEXT_IO.INTEGER IO (INTEGER);
use INT_IO;
use ASCII;

type TERMINAL TYPE is (SUN, VTIV0);
TERM : TERMINAL TYPE := SUN;

procedure NORMAL IO is
begin

CURSES .ECHZ;

CURSES .NOCRMCDE;
end NORMAL IC;

procedure SPETIAL IO is
begin

CURSES.NQETHT;

CURSES .CRMODE;
end SFETIAL IC;

procedure CLEAR SCREEN is
begin

NEW_PAGE;
end CLEAF_SCREEN;

76

procedure GCOTCXY (ROW, COLUMN : in INTEGER) is
begin
case TERM is
when SUN =>
PUT(ESC & "["):
INT_IC.PUT(ROW, 1);
PUT(' ;")
INT _IC.FUT(COLUMN, 1);
PUT(" £7);
when VT100 =>
PUT(ESC & "["):
INT_IO.PUT (ROW, 1);
PUT(' ;')
INT_IC.PUT(COLUMN, 1);
PUT("£7);
end case;
end GOTOXY:

procedure CLEAR LINE (LINE, NUMBER : in INTEGER) is
begin
GOTOXY (LINE, 1)
for I in 1 .. NUMBEF locop
fer J in 1 .. 79 loop
TEXT_IC.PUT(" ")
end loop:
NEW_LINE;
end loop:?
end CLEAF LINE;

function KEY PRESSED return BOOLEAN is
GC : INTEGER:

INT _VAF : INTEGER := O;

A : SYSTEM.ADDRESS := INT VAR'ADDRESS;
bezin -

GO := IOCTL.ICCTL(O, FIONREAD, AJ;

return INT VAP > O
end KEY FFESSEL:;

procedure PPEFARE _PCSITION DISPLAY is
begin
CLEAF_LINE (DE, 3);
GOTOXY (B, C1);
TEXT_IC.PUT("-----—~ "y
GOTOXY (8, C2 - §5);
TEXT I0.PUT("-=—=me-m "y
GOTCHY (8, CZz + 20);
TEXT_IC.PUT{"=-=mmocemmmmmmme ")
GOTOXY (9, C1);
TEXT IC.PUT(" LAT"):
GOTOXY (9, C2 - 5);
TEXT_I10.PUT(" LONG");
GOTOXY (2, C2 + 20):
TEXT_IO.PUT:(" POSITION");
end PREPARE PTSITION DISFLAY;

77

procedure PREPARE_COURSE_SPEED_DISPLAY is
begin

CLEAR_LINE(DR, 3);

GOTOXY (8, Cl):

TEXT_I0.PUT("~-=-==-- "y
GOTOXY (8, C2):
TEXT IC.PUT("----~-- "y

GOTOXY (9, Cl1);
TEXT_IO0.PUT(" COURSE");
GOTOXY (9, €2);
TEXT_I10.PUT(" SPEED");
end PREDARE COURSE_SPEED_DISPLAY;

procedure PREPARE_BEARING_DISTANCE_DISPLAY is
begin

CLEAR_LINE (DR, 3);

GOTOXY (8, C1):;

TEXT_IO.PUT("===—=--- "y
GOTOXY (8, C2 - 5);
TEXT IO.PUT("-=--—=-- "

GOTOXY (8, €2 + 20);:
TEXT_IO.PUT(" ------- "y
GCTOXY (9, C1);
TEXT_IC.PUT(" BRG");
GOTOYY (9, C2 - 5);
TEXT_IO.PUT(" DIST"):
GOTOXY (S, C2 + 20);
TEXT_IO.PUT(" TO WP");
end PREFARE_BEARING_DISTANCE_DISPLAY;

procedure PREPARE SCREEN is

begin
INITSCR;
CLEAR_SCREEN;
GOTOXY (1, 27);
TEXT_IO.PUT("I N S SIMULATOR");
GOTCXY (2, 1):
TEXT_IZ.PUT(DASH_LINE);
GOT2XY (14, 1);
TEXT_IC.PUT(DASE_LINE);
GOTOXY (1€, C1);
TEXT_IO.PUT("ENTER / UPDATE");
GOTOXY (1€, CZ);
TEXT_IT.PUT("DISFLAY");
GOTOXY 117, Cl);
TEXT_IC.PUT("==w~=—-—==>—m- ")
GOTOXY (17, C2);
TEXT_IC.PUT("==-m=-=-==~==-= ") :
GOTOXY (19, Cl);
TEXT_IO.PUT("[1] PRESENT POSITION");
GOTOXY (20, C1);
TEXT_IC.PUT("{2) WAYPOINT"):
GOTOXY (21, C1l);
TEXT_IO.PUT("[3] COURSE");
GOTOXY (22, C1):
TEXT_IOC.PUT("(4] SPEED");
GOTOXY (23, C1);
TEXT_IC.PUT("[5] STEER TT WAYPOINT");
GOTOXY {19, C2):
TEXT_IO.PUT(" (€] PRESENT POSITION") ;
GOTOXY (20, C2);
TEXT_IC.PUT("[7] WAYPTINT");

G2TOXY (21, Cz);

78

TEXT IC.PUT("(8] COU-SE / SPEED");
GOTOXY (22, C2);
TEXT 10.PUT("(9] BEARING ,/ DISTANCE");
end PREFARE_SCREEN;
end TERMINAL;

79

-- UNIT_NAME | data_stoc.ada
-- CSCI_NAME
-- UNIT_DESCRIPTION data structure to store data in tasks

-- UNIT_SPS_REFERENCE
-- UNIT_CALLING_SEQUENCE
-~ EXTERNAL_UNITS CALLED

-- INPUTS

-- OUTPUTS

-= CREATED | 15 January 1989

== BRUTHOFK | herbert guenterberg

~ DATE ==-=-=--=--==-- AUTHOR ~--=-==- REVISION # -- PR # -—--- TITLE —=m==m=—~=—-

-- This package supplies the necessary data structure to store data in a way,
-- that allows more than one task to access these data, without the risk of

-- accessing invalid data, or more than one task trying to modify the same

-- data at the same time. The implementation is generic to allow for different
-- data types tc be sto.ed.

-- The algerithm was taken from: David A.Watt and others; Ada Language and

-- Methecdologie; Prentice Hall; 1987

generic
type ITEM TYPE is private;

package DATA STORAGE is

task type BUFFEP is
entry STORE(ITEM : in ITEM TYFE);
entry RECALL (ITEM : out ITEM TYPE);
end BUFFEF:;
end DATA_STOPAGE:

package body DATA_STORAGE is

task body BUFFEP is
DATUM : ITEM TYFE:

regin
losp
select
arcept STORE (ITEM : in ITEM TYFE) dc
DATUM := ITEM: -
end STOFE;
cr
accept RECALL (ITEM : out ITEM TYFE) do

ITEM := DATUM;
end PECALL;
end select;
end loop;
end BUFFEER:;
end DATA_STORAGE:

80

(1]

(2]

(3]

(4]

(8]

%]

(10]

(11]

[12]

(13]

(14]

[15]

LIST OF REFERENCES

Grady Booch, Software Engineering with ADA, The Benjamin/Cummings
Publishing Company, 1986.

M.T.Devlin, Introducing ADA: Problem and Potentials, USAF Satellite Control
Facility, unpublished report, 1980.

Hank Raum, Design and Implementation of an Expert User Interface for CAPS,
MS Thesis, Naval Postgraduate School, Monteray, CA, December 7988.

Dan Galik, A Conceptual Design of a Software Base Management System for
CAPS , MS Thesis, Naval Postgraduate School, Monterey, CA, December 1988.

Laura Mariowe, A Scheduler for Critical Time Constraints, MS Thesis, Naval
Postgraduate School. Monterey, CA, December 1988.

Charles Altizer, Implementation of a Language Translfator for CAPS. MS Thesis.
Naval Postgraduate School, Monterey. CA, December 1988.

Mary Lou Wood, Runtime Support for Rapid Prototyping, MS Thesis, Naval
Postgraduate School, Monterey, CA, December 1988.

Roger Thorstensen, A Graphical Editor for CAPS, MS Thesis. Naval
Postgraduate School, Monterey, CA, December 1988.

Valdis Berzins."Software Engineering”, class notes provided at Naval
Postgraduate School. Monterey. CA. Spring Quarter 1988.

ADA Language Reference Manual ANSI'MIL-STD-1815A.

David A. Watt. Brian A. Wichman and William Findlay, ADA Language and
Methodology, Prentice Hall, 1987.

Grady Booch, Software Components with ADA, The Benjamin/Cummings
Publishing Company, 1987.

V. Berzins, Luqi Semantics of a Real-Time Language, in Proceedings of |EEE
9th Real-Time Symposium, Refereed Paper, Huntsville, AL, December 6-8, 1988,

Lugi. V.Berzins, Rapidly Prototyping Real Time Systems, iEEE Software,
pp 25-36, September 1988.

Luqi. Handling Timing Constraints in Rapid Prototyping, in proceedings of 22nd

Annual Hawaii International Conference on System Sciences, Refereed Paper,
Kailua-Kona, Hawaii, Januar 1989.

81

(16]

(17]

(18]

Lugi, V. Berzins, Execution of a High Level Real-Time Languagse, in Proceedings
of IEEE Sth Real-Time Symposium, Refereed Paper, Huntsville, AL, December
6-8, 1988.

Luqi. V. Berzins, Execution of a High Level Real-Time Language, in Proceedings
of IEEE 9th Real-Time Symposium, Refereed Paper, Huntsville, AL, December
6-8, 1988.

Jack Schwartz, Presentation at the CPS/CPL Program Briefing, Vienna, Virginia,
21 February 1989 by DARPA/ISTO

82

INITIAL DISTRIBUTION LIST

Defense Technical information Center
Cameron Station
Alexandria, Virginia 22304-6145

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, California 93943-5002

Office of Naval Research

Office of the Chief of Naval Research
Code 1224

800 N. Quincy Street

Arlington, Virginia 22217-5000

Ada Joint Program Office
OUSDRE(R&AT)
Pentagon

Washington, D.C. 20301

Naval Sea Systems Command
CAPT Thompson

National Center #2. Suite 7N0O6
Washington, D.C. 22202

Office of the Secretary of Defense
COL Green

STARS Program Office
Washington. D.C. 20301

Office of the Secretary of Defense
R&AT/S&CT, RM 3E114

STARS Program Office
Washington, D.C. 20301

Commanding Officer

Naval Research Laboratory
Code 5150

Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

Navy Ocean System Center

Attn. Linwood Sutton, Code 423
San Diego, California 92152-500

83

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Navy Ocean System Center
Attn. Les Anderson, Code 413
San Diego, California 92152-500

National Science Foundation
Attn. Dr. William Wuif
Washington, D.C. 20550

National Science Foundation

Division of Computer and Computation Research
Attn. Tom Keenan

Washington, D.C. 20550

Office of Naval Research

Computer Science Division, Code 1133
Attn. Dr. Van Tilborg

800 N. Quincy Street

Arlington, Virginia 22217-5000

Office of Naval Research

Computer Science Division, Code 1133
Attn. Dr. R.Wachten

800 N. Quincy Street

Arlington. Virginia 22217-5000

Office of Naval Research

Applied Mathematics and Computer Science, Code 1211
Attn. Dr J. Smith

800 N. Quincy Street

Arlington, Virginia 22217-5000

New Jersey Institute of Technology
Computer Science Department
Attn. Dr. Peter Ng

Newark, New Jersey 07102

Southern Methodist University
Computer Science Department
Attn. Dr. Murat Tanik
Dallas, Texas 75275

Editor-in-Chief, |IEEE Software
Attn. Dr. Ted Lewis

Oregon State University
Computer Scien~= Department
Corvallis, Oregon 97331

University ot Texas at Austin
Computer Science Department
Attn. Dr. Al Mok

Austin, Texas 78712

84

20.

21,

22.

23.

24.

25.

26.

28.

University of Maryland

College of Business Management
Tydings Hall, Room 0137

Attn. Dr. Alan Hevner

College Park, Maryland 20742

University of California at Berkeley

Department of Electrical Engineering and Computer Science
Computer Science Division

Attn. Dr. C.V. Ramamoorthy

Berkeley, California 94720

University of California at Los Angeles
School of Engineering and Applied Science
Computer Science Department

Attn. Dr. Daniel Berry

Los Angeles, California 90024

University of Maryland
Computer Science Department
Attn. Dr. Y. H. Chu

College Park, Maryland 20742

University of Maryland
Computer Science Department
Attn. Dr. N. Roussapoulos
College rark, Maryland 20742

Kestrel Institute

Attn. Dr. C. Green

1801 Page Mill Road

Palo Alto. California 94304

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
545 Tech Square

Attn. Dr. B. Liskov

Cambridge. Massachusetts 02139

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
545 Tech Square

Attn. Dr. J. Guttag

Cambridge, Massachusetts 02139

University of Minnesota
Computer Science Department
136 Lind Hall

207 Church Street SE

Attn. Dr. Slagle

Minneapolis, Minnesota 55455

85

29.

30.

31.

32.

33.

34.

35.

36.

37.

International Software Systems Inc.
12710 Research Boulevard, Suite 301
Attn. Dr. R. 7. Yeh

Austin, Texas 78759

Software Group, MCC
9430 Research Boulevard
Attn. Dr. L. Belady
Austin, Texas 78759

Carnegie Mellon University
Software Engineering Institute
Department of Computer Science
Attn. Dr. Lui Sha

Pittsburgh, Pennsylvania 15260

IBM T. J. Watson Research Center
Attn. Dr. A. Stoyenko

P.O. Box 704

Yorktown Heights, New York 10598

The Ohio State University

Department of Computer and Information Science
Attn. Dr. Ming Liu

2036 Neil Ave Mall

Columbus, Ohio 43210-1277

University of illinois

Department of Computer Science
Attn. Dr. Jane W. S. Liu

Urbana Champaign. illinois 61801

University of Massachusetts

Department of Computer and information Science
Attn. Dr. John A, Stankovic

Ambherst, Massachusetts 01003

University of Pittsburgh
Department of Computer Science
Attn. Dr. Alfs Berztiss

Pittsburgh, Pennsylvania 15260

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

Attn. Dr. Jacob Schwartz

1400 Wiison Boulevard

Arlington, Virginia 22209-2308

86

38.

39.

42.

43.

45,

49.

50.

Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)

Attn. Dr. Squires

1400 Wilson Boulevard

Arlington, Virginia 22209-2308

Defense Advanced Research Projects Agency (DAF.PA)
Director, Naval Technology Office

1400 Wilson Boulevard

Arlington, Virginia 2209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office

1400 Wilson Boulevard

Arlington, Virginia 2209-2308

Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office

1400 Wilson Boulevard

Arlington. Virginia 2209-2308

MCC Al Laboratory

Attn. Dr. Michael Gray

3500 West Balcones Center Drive
Austin, Texas 78759

COL C. Cox, USAF

JCS (J-8)

Nuclear Force Analysis Division
Pentagon

Washington, D.C. 20318-8000

Uriversity of California at San Diego
Department of Computer Science
Attn. Dr. Willam Howden

La Jolla, California 92093

University of California at Irvine

Department of Computer and Information Science
Attn. Dr. Nancy Levenson

Irvine, California 92717

University of California at Irvine

Department of Computer and Information Science
Attn. Dr. L. Osterweil

Irvine, California 92717

University of Colorado at Boulder
Department of Computer Science
Attn. Dr. Lloyd Fosdick

Boulder. Colorado 80309-0430

87

51.

52.

54.

585.

56.

58.

59.

60.

Santa Clara University

Department of Electrical Engineering and Computar Science

Attn. Dr. M. Ketabchi
Santa Clara, California 95053

Oregon Graduate Center
Portland (Beaverton)
Attn. Dr. R. Kieburtz
Portland, Oregon 97005

Dr. Bernd Kraemser

GMD

Postfach 1240

D-5205 Schioss Birlinghaven

Sankt Augustin 1, West Germany

Dr. Aimram Yuhudai
Te! Aviv University

School of Mathematical Sciences
Department of Computer Science

Tel Aviv, Israel 69978

Dr. Robert M. Balzer

USC-Information Sciences Institute

4676 Admiralty Way
Suite 1001

Marina del Ray. California 90292-6695

U.S. Air Force Systems Command

Rome Air Development Center
Attn. Frank Lamonica

Griffis Air Force Base, New York 13441-5700

U.S. Air Force Systems Command

Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka

Griffis Air Force Base, New York 13441-5700

Commanding Officer
GENAVAIRWING 3

Feuerweg 6

2859 Nordholz, West-Germany

LCDR H. Gunterberg
GENAVAIRWING 3

-Stab Fiiegende Gruppe-
Feuerweg 6

2859 Nordholz, West-Germany

88

61. Commanding Officer
KdoMF(Sys
Wibbelhofstr. 3
2940 Wilhelmshaven, West-Germany

89

